Journal Home > Volume 12 , Issue 6

In the era of miniaturization, the one-dimensional nanostructures presented numerous possibilities to realize operational nanosensors and devices by tuning their electrical transport properties. Upon size reduction, the physical properties of materials become extremely challenging to characterize and understand due to the complex interplay among structures, surface properties, strain effects, distribution of grains, and their internal coupling mechanism. In this report, we demonstrate the fabrication of a single metal-carbon composite nanowire inside a diamond- anvil-cell and examine the in situ pressure-driven electrical transport properties. The nanowire manifests a rapid and reversible pressure dependence of the strong nonlinear electrical conductivity with significant zero-bias differential conduction revealing a quantum tunneling dominant carrier transport mechanism. We fully rationalize our observations on the basis of a metal-carbon framework in a highly compressed nanowire corroborating a quantum-tunneling boundary, in addition to a classical percolation boundary that exists beyond the percolation threshold. The structural phase progressions were monitored to evidence the pressure-induced shape reconstruction of the metallic grains and modification of their intergrain interactions for successful explanation of the electrical transport behavior. The pronounced sensitivity of electrical conductivity to an external pressure stimulus provides a rationale to design low-dimensional advanced pressure sensing devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-pressure triggered quantum tunneling tuning through classical percolation in a single nanowire of a binary composite

Show Author's information Sudeshna Samanta1,2Mokwon Lee3Deok-Soo Kim3Jaeyong Kim2Lin Wang1( )
Center for High Pressure Science & Technology Advanced Research,Shanghai,201203,China;
HYU-HPSTAR-CIS High Pressure Research Center,Department of Physics, Hanyang University,Seoul,04763,Republic of Korea;
Voronoi Diagram Research Center, School of Mechanical Engineering,Hanyang University,Seoul,04763,Republic of Korea;

Abstract

In the era of miniaturization, the one-dimensional nanostructures presented numerous possibilities to realize operational nanosensors and devices by tuning their electrical transport properties. Upon size reduction, the physical properties of materials become extremely challenging to characterize and understand due to the complex interplay among structures, surface properties, strain effects, distribution of grains, and their internal coupling mechanism. In this report, we demonstrate the fabrication of a single metal-carbon composite nanowire inside a diamond- anvil-cell and examine the in situ pressure-driven electrical transport properties. The nanowire manifests a rapid and reversible pressure dependence of the strong nonlinear electrical conductivity with significant zero-bias differential conduction revealing a quantum tunneling dominant carrier transport mechanism. We fully rationalize our observations on the basis of a metal-carbon framework in a highly compressed nanowire corroborating a quantum-tunneling boundary, in addition to a classical percolation boundary that exists beyond the percolation threshold. The structural phase progressions were monitored to evidence the pressure-induced shape reconstruction of the metallic grains and modification of their intergrain interactions for successful explanation of the electrical transport behavior. The pronounced sensitivity of electrical conductivity to an external pressure stimulus provides a rationale to design low-dimensional advanced pressure sensing devices.

Keywords: high pressure, Voronoi diagram, electrical transport, single metal-carbon nanowire

References(58)

1

Xiao, X.; Yuan, L. Y.; Zhong, J. W.; Ding, T. P.; Liu, Y.; Cai, Z. X.; Rong, Y. G.; Han, H. W.; Zhou, J.; Wang, Z. L. High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv. Mater. 2011, 23, 5440–5444.

2

Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.

3

Cai, J. Z.; Lu, L.; Kong, W. J.; Zhu, H. W.; Zhang, C.; Wei, B. Q.; Wu, D. H.; Liu, F. Pressure-induced transition in magnetoresistance of single-walled carbon nanotubes. Phys. Rev. Lett. 2006, 97, 026402.

4

Cohen, D. J.; Mitra, D.; Peterson, K.; Maharbiz, M. M. A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Lett. 2012, 12, 1821–1825.

5

Ozden, S.; Autreto, P. A. S.; Tiwary, C. S.; Khatiwada, S.; Machado, L.; Galvao, D. S.; Vajtai, R.; Barrera, E. V.; Ajayan, M. P. Unzipping carbon nanotubes at high impact. Nano Lett. 2014, 14, 4131–4137.

6

Pang, C.; Lee, G. Y.; Kim, T. I.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11, 795–801.

7

Gong, S.; Schwalb, W.; Wang, Y. W.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. L. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 2014, 5, 3132.

8

Kim, K. K.; Hong, S.; Cho, H. M.; Lee, J.; Suh, Y. D.; Ham, J.; Ko, S. H. Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett. 2015, 15, 5240–5247.

9

Park, J.; Lee, Y.; Hong, J.; Ha, M.; Jung, Y. D.; Lim, H.; Kim, S. Y.; Ko, H. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 2014, 8, 4689–4697.

10

Jibril, L.; Ramírez, J.; Zaretski, A. V.; Lipomi, D. J. Single-nanowire strain sensors fabricated by nanoskiving. Sens. Actuators A Phys. 2017, 263, 702–706.

11

Jeon, J.; Lee, H. B. R.; Bao, Z. N. Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv. Mater. 2013, 25, 850–855.

12

Chen, Z.; Pfattner, R.; Bao, Z. N. Characterization and understanding of thermoresponsive polymer composites based on spiky nanostructured fillers. Adv. Electron. Mater. 2017, 3, 1600397.

13

Bartlett, M. D.; Kazem, N.; Powell-Palm, M. J.; Huang, X. N.; Sun, W. H.; Malen, J. A.; Majidi, C. High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc. Natl. Acad. Sci. USA 2017, 114, 2143–2148.

14

Paul, R.; Dai, L. M. Interfacial aspects of carbon composites. Compos. Int. 2018, 25, 539–605.

15

Zaretski, A. V.; Root, S. E.; Savchenko, A.; Molokanova, E.; Printz, A. D.; Jibril, L.; Arya, G.; Mercola, M.; Lipomi, D. J. Metallic nanoislands on graphene as highly sensitive transducers of mechanical, biological, and optical signals. Nano Lett. 2016, 16, 1375–1380.

16

Mikheykin, A. S.; Dmitriev, V. P.; Chagovets, S. V.; Kuriganova, A. B.; Smirnova, N. V.; Leontyev, I. N. The compressibility of nanocrystalline Pt. Appl. Phys. Lett. 2012, 101, 173111.

17

Yang, X.; Hu, J.; Chen, S. M.; He, J. L. Understanding the percolation characteristics of nonlinear composite dielectrics. Sci. Rep. 2016, 6, 30597.

18

Fostner, S.; Brown, R.; Carr, J.; Brown, S. A. Continuum percolation with tunneling. Phys. Rev. B 2014, 89, 075402.

19

Balberg, I. Tunneling and nonuniversal conductivity in composite materials. Phys. Rev. Lett. 1987, 59, 1305–1308.

20

Toker, D.; Azulay, D.; Shimoni, N.; Balberg, I.; Millo, O. Tunneling and percolation in metal-insulator composite materials. Phys. Rev. B 2003, 68, 041403.

21

Schwalb, C. H.; Grimm, C.; Baranowski, M.; Sachser, R.; Porrati, F.; Reith, H.; Das, P.; Müller, J.; Völklein, F.; Kaya, A. et al. A tunable strain sensor using nanogranular metals. Sensors 2010, 10, 9847–9856.

22

Park, J. H.; Steingart, D. A.; Kodambaka, S.; Ross, F. M. Electrochemical electron beam lithography: Write, read, and erase metallic nanocrystals on demand. Sci. Adv. 2017, 3, e1700234.

23

Córdoba, R.; Ibarra, A.; Mailly, D.; Ma De Teresa, J. Vertical growth of superconducting crystalline hollow nanowires by He+ focused ion beam induced deposition. Nano Lett. 2018, 18, 1379–1386.

24

Fernández-Pacheco, A.; De Teresa, J. M.; Córdoba, R.; Ibarra, M. R. Metal-insulator transition in Pt-C nanowires grown by focused-ion-beam- induced deposition. Phys. Rev. B 2009, 79, 174209.

25

Beloborodov, I. S.; Efetov, K. B.; Lopatin, A. V.; Vinokur, V. M. Transport properties of granular metals at low temperatures. Phys. Rev. Lett. 2003, 91, 246801.

26

Liao, Z. M.; Xu, J.; Zhang, X. Z.; Yu, D. P. The relationship between quantum transport and microstructure evolution in carbon-sheathed Pt granular metal nanowires. Nanotechnology 2008, 19, 305402.

27

Beloborodov, I. S.; Lopatin, A. V.; Vinokur, V. M.; Efetov, K. B. Granular electronic systems. Rev. Mod. Phys. 2007, 79, 469–518.

28

Kolb, F.; Schmoltner, K.; Huth, M.; Hohenau, A.; Krenn, J.; Klug, A.; List, E. J. W.; Plank, H. Variable tunneling barriers in FEBID based PtC metal-matrix nanocomposites as a transducing element for humidity sensing. Nanotechnology 2013, 24, 305501.

29

Durkan, C.; Welland, M. E. Size effects in the electrical resistivity of polycrystalline nanowires. Phys. Rev. B 2000, 61, 14215–14218.

30

Prasad Manoharan, M.; Kumar, S.; Haque, M. A.; Rajagopalan, R.; Foley, H. C. Room temperature amorphous to nanocrystalline transformation in ultra-thin films under tensile stress: An in situ TEM study. Nanotechnology 2010, 21, 505707.

31

Zhu, J.; Quan, Z.; Wang, C.; Wen, X.; Jiang, Y.; Fang, J.; Wang, Z.; Zhao, Y.; Xu, H. Structural evolution and mechanical behaviour of Pt nanoparticle superlattices at high pressure. Nanoscale 2016, 8, 5214–5218.

32

Liao, H. G.; Cui, L. K.; Whitelam, S.; Zheng, H. M. Real-time imaging of Pt3Fe nanorod growth in solution. Science 2012, 336, 1011–1014.

33
http://www.almax-easylab.com/WebsitePatternedAnvils01.aspx. [Dear author, please complete this ref., thanks]
34

Kiuchi, M.; Matsui, S.; Isono, Y. The piezoresistance effect of FIB-deposited carbon nanowires under severe strain. J. Micromech. Microeng. 2008, 18, 065011.

35

Chakravorty, M.; Das, K.; Raychaudhuri, A. K.; Naik, J. P.; Prewett, P. D. Temperature dependent resistivity of platinum–carbon composite nanowires grown by focused ion beam on SiO2/Si substrate. Microelectron. Eng. 2011, 88, 3360–3364.

36

Faraby, H.; DiBattista, M.; Bandaru, P. R. Percolation of gallium dominates the electrical resistance of focused ion beam deposited metals. Appl. Phys. Lett. 2014, 104, 173107.

37

Barzola-Quiquia, J.; Schulze, S.; Esquinazi, P. Transport properties and atomic structure of ion-beam-deposited W, Pd and Pt nanostructures. Nanotechnology 2009, 20, 165704.

38

Lin, J. F.; Bird, J. P.; Rotkina, L.; Bennett, P. A. Classical and quantum transport in focused-ion-beam-deposited Pt nanointerconnects. Appl. Phys. Lett. 2003, 82, 802–804.

39

Peñate-Quesada, L.; Mitra, J.; Dawson, P. Non-linear electronic transport in Pt nanowires deposited by focused ion beam. Nanotechnology 2007, 18, 215203.

40

He, R. R.; Yang, P. D. Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 2006, 1, 42–46.

41

De Teresa, J. M.; Córdoba, R.; Fernández-Pacheco, A.; Montero, O.; Strichovanec, P.; Ibarra, M. R. Origin of the difference in the resistivity of as-grown focused-ion- and focused-electron-beam-induced Pt nanodeposits. J. Nanomater. 2009, 2009, 936863.

42

Vaz, A. R.; da Silva, M. M.; Leon, J.; Moshkalev, S. A.; Swart, J. W. Platinum thin films deposited on silicon oxide by focused ion beam: Characterization and application. J. Mater. Sci. 2008, 43, 3429–3434.

43

Lin, J. F.; Bird, J. P.; Rotkina, L.; Sergeev, A.; Mitin, V. Large effects due to electron–phonon-impurity interference in the resistivity of Pt/C-Ga composite nanowires. Appl. Phys. Lett. 2004, 84, 3828–3830.

44

Wei, Y. X.; Wang, R. J.; Wang, W. H. Soft phonons and phase transition in amorphous carbon. Phys. Rev. B 2005, 72, 012203.

45

Hoppel, C. P. R.; Bogetti, T. A.; Gillespie, J. W. Jr. Literature review-effects of hydrostatic pressure on the mechanical behavior of composite materials. J. Thermoplast. Compos. Mater. 1995, 8, 375–409.

46

Bousige, C.; Balima, F.; Machon, D.; Pinheiro, G. S.; Torres-Dias, A.; Nicolle, J.; Kalita, D.; Bendiab, N.; Marty, L.; Bouchiat, V. et al. Biaxial strain transfer in supported graphene. Nano Lett. 2017, 17, 21–27.

47

Rotundu, C. R.; Ćuk, T.; Greene, R. L.; Shen, Z. X.; Hemley, R. J.; Struzhkin, V. V. High-pressure resistivity technique for quasi-hydrostatic compression experiments. Rev. Sci. Instrum. 2013, 84, 063903.

48

Sun, L.; Wu, Q. Pressure-induced exotic states in rare earth hexaborides. Rep. Prog. Phys. 2016, 79, 084503.

49

Dukic, M.; Winhold, M.; Schwalb, C. H.; Adams, J. D.; Stavrov, V.; Huth, M.; Fantner, G. E. Direct-write nanoscale printing of nanogranular tunnelling strain sensors for sub-micrometre cantilevers. Nat. Commun. 2016, 7, 12487.

50

Lau, D. W.; McCulloch, D. G.; Taylor, M. B.; Partridge, J. G.; McKenzie, D. R.; Marks, N. A.; Teo, E. H. T.; Tay, B. K. Abrupt stress induced transformation in amorphous carbon films with a highly conductive transition phase. Phys. Rev. Lett. 2008, 100, 176101.

51

Nishi, Y.; Hirano, M. Bending stress dependent electrical resistivity of carbon fiber in polymer for health monitoring system. Mater. Trans. 2007, 48, 2735–2738.

52

Li, X. Y.; Mao, H. K. Solid carbon at high pressure: Electrical resistivity and phase transition. Phys. Chem. Miner. 1994, 21, 1–5.

53

Sagar, R. U. R.; Zhang, X. Z.; Xiong, C. Y.; Yu, Y. Semiconducting amorphous carbon thin films for transparent conducting electrodes. Carbon 2014, 76, 64–70.

54

Chang, K. C.; Odagaki, T. Localization and tunneling effects in percolating systems. Phys. Rev. B 1987, 35, 2598–2603.

55

Huth, M.; Porrati, F.; Schwalb, C.; Winhold, M.; Sachser, R.; Dukic, M.; Adams, J.; Fantner, G. Focused electron beam induced deposition: A perspective. Beilstein J. Nanotechnol. 2012, 3, 597–619.

56

Agraït, N.; Yeyati A. L.; van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 2003, 377, 81–279.

57

Nenashev, A. V.; Jansson, F.; Baranovskii, S. D.; Österbacka, R.; Dvurechenskii, A. V.; Gebhard, F. Hopping conduction in strong electric fields: Negative differential conductivity. Phys. Rev. B 2008, 78, 165207.

58

Park, C. H.; Lee, S. Y.; Hwang, D. S.; Shin, D. W.; Cho, D. H.; Lee, K. H.; Kim, T. W.; Kim, T. W.; Lee, M.; Kim, D. S. et al. Nanocrack-regulated self-humidifying membranes. Nature 2016, 532, 480–483.

File
12274_2019_2295_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 November 2018
Revised: 24 December 2018
Accepted: 03 January 2019
Published: 29 May 2019
Issue date: June 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was mainly supported by the National Natural Science Foundation of China (No. 11874076), the National Science Associated Funding (NSAF) (No. U1530402), and Science Challenging Program (No. TZ2016001). S. S. would also like to thank Dr. Christophe Thissieu from Almax easyLab Inc, MA, Cambridge, USA for providing the designer diamond anvils for the experiments. S. S. would like to thank Dr. Ankita Ghatak, S. N. Bose National Centre for Basic Sciences, Kolkata, India for the analysis and discussion on HRTEM data.

Return