Journal Home > Volume 12 , Issue 4

The dual-emissive N, S co-doped carbon dots (N, S-CDs) with a long emission wavelength were synthesized via solvothermal method. The N, S-CDs possess relatively high photoluminescence (PL) quantum yield (QY) (35.7%) towards near-infrared fluorescent peak up to 648 nm. With the advanced characterization techniques including X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), etc. It is found that the doped N, S elements play an important role in the formation of high QY CDs. The N, S-CDs exist distinct pH-sensitive feature with reversible fluorescence in a good linear relationship with pH values in the range of 1.0–13.0. What is more, N, S-CDs can be used as an ultrasensitive Ag+ probe sensor with the resolution up to 0.4 μM. This finding will expand the application of as prepared N, S-CDs in sensing and environmental fields.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Red/orange dual-emissive carbon dots for pH sensing and cell imaging

Show Author's information Miaoran Zhang1Rigu Su1Jian Zhong2,3Ling Fei4Wei Cai1Qingwen Guan1Weijun Li1Neng Li5Yusheng Chen6Lulu Cai2( )Quan Xu1( )
State Key Laboratory of Heavy Oil Processing,Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing),Beijing,102249,China;
Personalized Drug Therapy Key Laboratory of Sichuan Province,Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China,Chengdu,611731,China;
School of Pharmacy,North Sichuan Medical College,Nanchong,637000,China;
Chemical Engineering Department,University of Louisiana at Lafayette, Lafayette,LA 70504,USA;
State Key Laboratory of Silicate Materials for Architectures,Wuhan University of Technology,Wuhan,430070,China;
Department of Chemistry,University of Akron,Akron,OH 44325,USA;

Abstract

The dual-emissive N, S co-doped carbon dots (N, S-CDs) with a long emission wavelength were synthesized via solvothermal method. The N, S-CDs possess relatively high photoluminescence (PL) quantum yield (QY) (35.7%) towards near-infrared fluorescent peak up to 648 nm. With the advanced characterization techniques including X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), etc. It is found that the doped N, S elements play an important role in the formation of high QY CDs. The N, S-CDs exist distinct pH-sensitive feature with reversible fluorescence in a good linear relationship with pH values in the range of 1.0–13.0. What is more, N, S-CDs can be used as an ultrasensitive Ag+ probe sensor with the resolution up to 0.4 μM. This finding will expand the application of as prepared N, S-CDs in sensing and environmental fields.

Keywords: photoluminescence, pH-sensitive, carbon cell imaging, dual-emissive, Ag+ probe

References(30)

1

Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Shao, J. R.; Zhang, J. H.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355-381.

2

Miao, X.; Qu, D.; Yang, D. X.; Nie, B.; Zhao, Y. K.; Fan, H. Y.; Sun, Z. C. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 2018, 30, 1704740.

3

Zhang, Y. B.; Chan, K. F.; Wang, B.; Chiu, P. W. Y.; Zhang, L. Spore-derived color-tunable multi-doped carbon nanodots as sensitive nanosensors and intracellular imaging agents. Sensors Actuat. B-Chem. 2018, 271, 128-136.

4

Chen, Y. H.; Zheng, M. T.; Xiao, Y.; Dong, H. W.; Zhang, H. R.; Zhuang, J. L.; Hu, H.; Lei, B. F.; Liu, Y. L. A self-quenching-resistant carbon-dot powder with tunable solid-state fluorescence and construction of dual-fluorescence morphologies for white light-emission. Adv. Mater. 2016, 28, 312-318.

5

Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. 2013, 52, 3953-3957.

6

Li, W.; Zhang, Z. H.; Kong, B.; Feng, S. S.; Wang, J. X.; Wang, L. Z.; Yang, J. P.; Zhang, F.; Wu, P.Y.; Zhang, D. Y. Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. Angew. Chem. 2013, 52, 8151-8155.

7

Nie, H.; Li, M. J.; Li, Q. S.; Liang, S. J.; Tan, Y. Y.; Sheng L.; Shi, W.; Zhang, S. X. A. Carbon dots with continuously tunable full-color emission and their application in Ratiometric pH sensing. Chem. Mater. 2014, 26, 3104-3112.

8

Liu, X. X.; Yang, C. L.; Zheng, B. Z.; Dai, J. Y.; Yan, L.; Zhuang, Z. G.; Du, J.; Guo, Y.; Xiao, D. Green anhydrous synthesis of hydrophilic carbon dots on large-scale and their application for broad fluorescent pH sensing. Sensors Actuat. B-Chem. 2018, 255, 572-579.

9

Gao, X. H.; Lu, Y. Z.; Zhang, R. Z.; He, S. J.; Ju, J.; Liu, M. M.; Li, L.; Chen, W. One-pot synthesis of carbon nanodots for fluorescence turn-on detection of Ag+ based on the Ag+-induced enhancement of fluorescence. J. Mater. Chem. C 2015, 3, 2302-2309.

10

Miao, P.; Han, K.; Tang, Y. G.; Wang, B. D.; Lin, T.; Cheng, W. B. Recent advances in carbon nanodots: Synthesis, properties and biomedical applications. Nanoscale 2015, 7, 1586-1595.

11

Dong, Y. Q.; Chen, Y. M.; You, X.; Lin, W.; Lu, C. H.; Yang, H. H.; Chi, Y. W. High photoluminescent carbon based dots with tunable emission color from orange to green. Nanoscale 2017, 9, 1028-1032.

12

Ding, H.; Ji, Y.; Wei, J. S.; Gao, Q. Y.; Zhou, Z. Y.; Xiong, H. M. Facile synthesis of red-emitting carbon dots from pulp-free lemon juice for bioimaging. J. Mater. Chem. B 2017, 5, 5272-5277.

13

Zhao, A. D.; Chen, Z. W.; Zhao, C. Q.; Gao, N.; Ren, J. S.; Qu, X. G. Recent advances in bioapplications of C-dots. Carbon 2015, 85, 309-327.

14

Wang, Z. F.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv. Mater. 2017, 29, 1702910.

15

Xu, Q.; Li, B. F.; Ye, Y. C.; Cai, W.; Li, W. J.; Yang C. Y.; Chen, Y. S.; Xu, M.; Li, N.; Zheng, X. S. et al. Synthesis, mechanical investigation, and application of nitrogen and phosphorus co-doped carbon dots with a high photoluminescent quantum yield. Nano Res. 2018, 11, 3691-3701.

16

Zhang, Y.; He, J. H. Facile synthesis of S, N co-doped carbon dots and investigation of their photoluminescence properties. Phys. Chem. Chem. Phys. 2015, 17, 20154-20159.

17

Chen, Y. H.; Zheng, M. T.; Xiao, Y.; Dong, H. W.; Zhang, H. R.; Zhuang, J. L.; Hu, H.; Lei, B. F.; Liu, Y. I. A self-quenching-resistant carbon-dot powder with tunable solid-state fluorescence and construction of dual-fluorescence morphologies for white light-emission. Adv. Mater. 2016, 28, 312-318.

18

Jiang, J.; He, Y.; Li, S. Y.; Cui, H. Amino acids as the source for producing carbon nanodots: Microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement. Chem. Commun. 2012, 48, 9634-9636.

19

Xu, Q.; Liu, Y.; Gao, C.; Wei, J. F.; Zhou, H. J.; Chen, Y. S.; Dong, C. B.; Sreeprasad, T. S.; Li, N.; Xia, Z. H. Synthesis, mechanistic investigation, and application of photoluminescent sulfur and nitrogen co-doped carbon dots. J. Mater. Chem. C 2015, 3, 9885-9893.

20

Wu, M. B.; Wang, Y.; Wu, W. T.; Hu, C.; Wang, X. N.; Zheng, J. T.; Li, Z. T.; Jiang, B.; Qiu, J. S. Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke. Carbon 2014, 78, 480-489.

21

Sun, D.; Ban, R.; Zhang, P. H.; Wu, G. H.; Zhang, J. R.; Zhu, J. J. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 2013, 64, 424-434.

22

Zhang, J.; Yang, L.; Yuan, Y.; Jiang, J.; Yu, S. H. One-pot gram-scale synthesis of nitrogen and sulfur embedded organic dots with distinctive fluorescence behaviors in free and aggregated states. Chem. Mater. 2016, 28, 4367-4374.

23

Yuan, F. L.; Ding, L.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Zhou, S. X.; Fang, D. C.; Yang. S. H. Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range. Nanoscale 2015, 7, 11727-11733.

24

Gu, W. T.; Sevilla, M.; Magasinski, A.; Fuertes, A. B.; Yushin, G. Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: A case study for pseudocapacitance detection. Energy Environ. Sci. 2013, 6, 2465-2476.

25

Ding, H.; Wei, J. S.; Xiong, H. M. Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale 2014, 6, 13817-13823.

26

Huang, S. S.; He, S.; Lu, Y.; Wei, F. F.; Zeng, X. S.; Zhao, L. C. Highly sensitive and selective fluorescent chemosensor for Ag+ based on a coumarin-Se2N chelating conjugate. Chem. Commun. 2011, 47, 2408-2410.

27

Dang, D. K.; Sundaram, C.; Ngo, Y. L. T.; Chung, J. S.; Kim, E. J.; Hur, S. H. One pot solid-state synthesis of highly fluorescent N and S co-doped carbon dots and its use as fluorescent probe for Ag+ detection in aqueous solution. Sensors Actuat. B-Chem. 2018, 255, 3284-3291.

28

Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T. Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane. Dalton Trans. 2015, 44, 1249-1257.

29

Liu, J.; Dong, Y.; Ma, Y.; Han, Y.; Ma, S.; Chen, H. One-step synthesis of red/green dual-emissive carbon dots for ratiometric sensitive ONOO probing and cell imaging. Nanoscale 2018, 10, 13589-13598.

30

Zhang, X. Y.; Wang, S. Q.; Zhu, C. Y.; Liu, M. Y.; Ji, Y.; Feng, L.; Tao, L.; Wei, Y. Carbon-dots derived from nanodiamond: photoluminescence tunable nanoparticles for cell imaging. J. Colloid Interf. Sci. 2013, 397, 39-44.

File
12274_2019_2293_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 November 2018
Revised: 03 January 2019
Accepted: 04 January 2019
Published: 17 January 2019
Issue date: April 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

We thank Beijing Nova Program Interdisciplinary Studies Cooperative Project (No. Z181100006218138), Science Foundation of China University of Petroleum-Beijing (No. 2462018BJC004), National Key Specialty Construction Project of Clinical Pharmacy (No. 30305030698) and Research Funding of Sichuan Provincial People's Hospital (No. 2017LY08) for the support.

Return