Journal Home > Volume 12 , Issue 5

Discharging dye contaminants into water is a major concern around the world. Among a variety of methods to treat dye-contaminated water, photocatalytic degradation has gained attention as a tool for treating the colored water. Herein, we review the recent advancements in photocatalysis for dye degradation in industrial effluents by categorizing photocatalyst materials into three generations. First generation photocatalysts are composed of single-component materials (e.g., TiO2, ZnO, and CdS), while second generation photocatalysts are composed of multiple components in a suspension (e.g., WO3/NiWO4, BiOI/ZnTiO3, and C3N4/Ag3VO4). Photocatalysts immobilized on solid substrates are regarded as third generation materials (e.g., FTO/WO3-ZnO, Steel/TiO2-WO3, and Glass/P-TiO2). Photocatalytic degradation mechanisms, factors affecting the dye degradation, and the lesser-debated uncertainties related to the photocatalysis are also discussed to offer better insights into environmental applications. Furthermore, quantum yields of different photocatalysts are calculated, and a performance evaluation method is proposed to compare photocatalyst systems for dye degradation. Finally, we discuss the present limitations of photocatalytic dye degradation for field applications and the future of the technology.


menu
Abstract
Full text
Outline
About this article

Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges

Show Author's information Hassan Anwer1,§Asad Mahmood1,§Jechan Lee2,§Ki-Hyun Kim1( )Jae-Woo Park1( )Alex C. K. Yip3
Department of Civil and Environmental Engineering,Hanyang University,222 Wangsimni-ro, Seoul,04763,Republic of Korea;
Department of Environmental and Safety Engineering,Ajou University,Suwon,16499,Republic of Korea;
Department of Chemical and Process Engineering,University of Canterbury,Christchurch,8041,New Zealand;

§ Hassan Anwer, Asad Mahmood, and Jechan Lee contributed equally to this work.

Abstract

Discharging dye contaminants into water is a major concern around the world. Among a variety of methods to treat dye-contaminated water, photocatalytic degradation has gained attention as a tool for treating the colored water. Herein, we review the recent advancements in photocatalysis for dye degradation in industrial effluents by categorizing photocatalyst materials into three generations. First generation photocatalysts are composed of single-component materials (e.g., TiO2, ZnO, and CdS), while second generation photocatalysts are composed of multiple components in a suspension (e.g., WO3/NiWO4, BiOI/ZnTiO3, and C3N4/Ag3VO4). Photocatalysts immobilized on solid substrates are regarded as third generation materials (e.g., FTO/WO3-ZnO, Steel/TiO2-WO3, and Glass/P-TiO2). Photocatalytic degradation mechanisms, factors affecting the dye degradation, and the lesser-debated uncertainties related to the photocatalysis are also discussed to offer better insights into environmental applications. Furthermore, quantum yields of different photocatalysts are calculated, and a performance evaluation method is proposed to compare photocatalyst systems for dye degradation. Finally, we discuss the present limitations of photocatalytic dye degradation for field applications and the future of the technology.

Keywords: performance evaluation, photocatalyst, dye wastewater, degradation mechanism

References(167)

1

Zeng, G. M.; Chen, M.; Zeng, Z. T. Risks of neonicotinoid pesticides. Science 2013, 340, 1403.

2

Santos-Ebinuma, V. C.; Roberto, I. C.; Teixeira, M. F. S.; Pessoa, A., Jr. Improving of red colorants production by a new Penicillium purpurogenum strain in submerged culture and the effect of different parameters in their stability. Biotechnol. Prog. 2013, 29, 778-785.

3

Anandhan, M.; Prabaharan, T. Environmental impacts of natural dyeing process using pomegranate peel extract as a dye. Int. J. Appl. Eng. Res. 2018, 13, 7765-7771.

4

Kaur, S.; Rani, S.; Mahajan, R. K.; Asif, M.; Gupta, V. K. Synthesis and adsorption properties of mesoporous material for the removal of dye safranin: Kinetics, equilibrium, and thermodynamics. J. Ind. Eng. Chem. 2015, 22, 19-27.

5

Ajmal, A.; Majeed, I.; Malik, R. N.; Idriss, H.; Nadeem, M. A. Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview. RSC Adv. 2014, 4, 37003-37026.

6

Wang, M. K.; Chamberland, N.; Breau, L.; Moser, J. E.; Humphry-Baker, R.; Marsan, B.; Zakeeruddin, S. M.; Grätzel, M. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat. Chem. 2010, 2, 385-389.

7

Muhd Julkapli, N.; Bagheri, S.; Bee Abd Hamid, S. Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci. World J. 2014, 2014, 692307.

8

Kommineni, S.; Zoeckler, J.; Stocking, A.; Liang, S.; Flores, A.; Kavanaugh, M.; Rodriguea, R.; Browne, T.; Robert, R.; Brown, A. et al. Advanced oxidation processes (National Water Research Institute, 2011). Google Scholar 2011.

9

Weinberg, N. L.; Weinberg, H. R. Electrochemical oxidation of organic compounds. Chem. Rev. 1968, 68, 449-523.

10

Azbar, N.; Yonar, T.; Kestioglu, K. Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere 2004, 55, 35-43.

11

Deng, Y.; Zhao, R. Z. Advanced oxidation processes (AOPs) in wastewater treatment. Curr. Pollut. Rep. 2015, 1, 167-176.

12

Khan, M. M.; Adil, S. F.; Al-Mayouf, A. Metal oxides as photocatalysts. J. Saudi Chem. Soc. 2015, 19, 462-464.

13

Elsalamony, R. A. Advances in photo-catalytic materials for environmental applications. Res. Rev. : J. Mat. Sci. 2016, 4, 26-50.

14

Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J. -M. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B: Environ. 2001, 31, 145-157.

15

Rauf, M. A.; Meetani, M. A.; Khaleel, A.; Ahmed, A. Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS. Chem. Eng. J. 2010, 157, 373-378.

16

Trandafilović, L. V.; Jovanović, D. J.; Zhang, X.; Ptasińska, S.; Dramićanin, M. D. Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO: Eu nanoparticles. Appl. Catal. B: Environ. 2017, 203, 740-752.

17

Huang, M. L.; Xu, C. F.; Wu, Z. B.; Huang, Y. F.; Lin, J. M.; Wu, J. H. Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes Pigm. 2008, 77, 327-334.

18

Li, Y. J.; Li, X. D.; Li, J. W.; Yin, J. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res. 2006, 40, 1119-1126.

19

Li, T. T.; Zhao, L. H.; He, Y. M.; Cai, J.; Luo, M. F.; Lin, J. J. Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation. Appl. Catal. B: Environ. 2013, 129, 255-263.

20

He, Y. M.; Cai, J.; Li, T. T.; Wu, Y.; Lin, H. J.; Zhao, L. H.; Luo, M. F. Efficient degradation of RhB over GdVO4/g-C3N4 composites under visible-light irradiation. Chem. Eng. J. 2013, 215-216, 721-730.

21

Liang, C.; Niu, C. -G.; Wen, X. -J.; Yang, S. -F.; Shen, M. -C.; Zeng, G. -M. Effective removal of colourless pollutants and organic dyes by Ag@AgCl nanoparticle-modified CaSn(OH)6 composite under visible light irradiation. New J. Chem. 2017, 41, 5334-5346.

22

Du, Y. -B.; Niu, C. -G.; Zhang, L.; Ruan, M.; Wen, X. -J.; Zhang, X. -G.; Zeng, G. -M. Synthesis of Ag/AgCl hollow spheres based on the Cu2O nanospheres as template and their excellent photocatalytic property. Mol. Catal. 2017, 436, 100-110.

23

Rochkind, M.; Pasternak, S.; Paz, Y. Using dyes for evaluating photocatalytic properties: A critical review. Molecules 2014, 20, 88-110.

24

Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001, 77, 247-255.

25

Zhang, J. Y.; Xiao, G. C.; Xiao, F. -X.; Liu, B. Revisiting one-dimensional TiO2 based hybrid heterostructures for heterogeneous photocatalysis: A critical review. Mater. Chem. Front. 2017, 1, 231-250.

26

Zhang, X. Y.; Qin, J. Q.; Xue, Y.; Yu, P. F.; Zhang, B.; Wang, L. M.; Liu, R. P. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci. Rep. 2014, 4, 4596.

27

Bhattacharyya, A.; Kawi, S.; Ray, M. B. Photocatalytic degradation of orange Ⅱ by TiO2 catalysts supported on adsorbents. Catal. Today 2004, 98, 431-439.

28

Jaiswal, R.; Bharambe, J.; Patel, N.; Dashora, A.; Kothari, D. C.; Miotello, A. Copper and nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity. Appl. Catal. B: Environ. 2015, 168-169, 333-341.

29

Zou, J. -P.; Wu, D. -D.; Luo, J. M.; Xing, Q. -J.; Luo, X. -B.; Dong, W. -H.; Luo, S. -L.; Du, H. -M.; Suib, S. L. A strategy for one-pot conversion of organic pollutants into useful hydrocarbons through coupling photodegradation of MB with photoreduction of CO2. ACS Catal. 2016, 6, 6861-6867.

30

Liu, X. Y.; Chen, C. S.; Chen, X. A.; Qian, G. P.; Wang, J. H.; Wang, C.; Cao, Z. S.; Liu, Q. C. WO3 QDs enhanced photocatalytic and electrochemical perfomance of GO/TiO2 composite. Catal. Today 2018, 315, 155-161.

31

Jung, J. -J.; Jang, J. -W.; Park, J. -W. Effect of generation growth on photocatalytic activity of nano TiO2-magnetic cored dendrimers. J. Ind. Eng. Chem. 2016, 44, 52-59.

32

Mosleh, S.; Rahimi, M. R.; Ghaedi, M.; Dashtian, K. Sonophotocatalytic degradation of trypan blue and vesuvine dyes in the presence of blue light active photocatalyst of Ag3PO4/Bi2S3-HKUST-1-MOF: Central composite optimization and synergistic effect study. Ultrason. Sonochem. 2016, 32, 387-397.

33

Intarasuwan, K.; Amornpitoksuk, P.; Suwanboon, S.; Graidist, P. Photocatalytic dye degradation by ZnO nanoparticles prepared from X2C2O4 (X = H, Na and NH4) and the cytotoxicity of the treated dye solutions. Sep. Purif. Technol. 2017, 177, 304-312.

34

Yang, J.; Chen, C. C.; Ji, H. W.; Ma, W. H.; Zhao, J. C. Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: Photoelectrocatalytic study by TiO2-film electrodes. J. Phys. Chem. B 2005, 109, 21900-21907.

35

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.

36

Teets, T. S.; Nocera, D. G. Photocatalytic hydrogen production. Chem. Commun. 2011, 47, 9268-9274.

37

Atarod, M.; Nasrollahzadeh, M.; Mohammad Sajadi, S. Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water. J. Colloid Interface Sci. 2016, 462, 272-279.

38

Kyzas, G. Z.; Siafaka, P. I.; Pavlidou, E. G.; Chrissafis, K. J.; Bikiaris, D. N. Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chem. Eng. J. 2015, 259, 438-448.

39

Fil, B. A.; Karcioglu, K. Z.; Boncukcuoglu, R.; Yilmaz, A. E. Removal of cationic dye (basic red 18) from aqueous solution using natural Turkish clay. Global Nest J. 2013, 15, 529-541.

40

Huo, Y. N.; Chen, X. F.; Zhang, J.; Pan, G. F.; Jia, J. P.; Li, H. X. Ordered macroporous Bi2O3/TiO2 film coated on a rotating disk with enhanced photocatalytic activity under visible irradiation. Appl. Catal. B: Environ. 2014, 148-149, 550-556.

41

Kim, L. -J.; Jang, J. -W.; Park, J. -W. Nano TiO2-functionalized magnetic-cored dendrimer as a photocatalyst. Appl. Catal. B: Environ. 2014, 147, 973-979.

42

Wang, J.; Lv, Y. H.; Zhang, L. Q.; Liu, B.; Jiang, R. Z.; Han, G. X.; Xu, R.; Zhang, X. D. Sonocatalytic degradation of organic dyes and comparison of catalytic activities of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites under ultrasonic irradiation. Ultrason. Sonochem. 2010, 17, 642-648.

43

Vinodgopal, K.; Kamat, P. V. Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films. Environ. Sci. Technol. 1995, 29, 841-845.

44

Pouretedal, H. R.; Norozi, A.; Keshavarz, M. H.; Semnani, A. Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes. J. Hazard. Mater. 2009, 162, 674-681.

45

Daneshvar, N.; Salari, D.; Khataee, A. R. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol. A: Chem. 2004, 162, 317-322.

46

Liu, F. Z.; Leung, Y. H.; Djurišić, A. B.; Ng, A. M. C.; Chan, W. K. Native defects in ZnO: Effect on dye adsorption and photocatalytic degradation. J. Phys. Chem. C 2013, 117, 12218-12228.

47

Tahir, M.; Amin, N. S. Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4. Appl. Catal. B: Environ. 2015, 162, 98-109.

48

Li, K.; Gao, S. M.; Wang, Q. Y.; Xu, H.; Wang, Z. Y.; Huang, B. B.; Dai, Y.; Lu, J. In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation. ACS Appl. Mater. Interfaces 2015, 7, 9023-9030.

49

Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234-5244.

50

Etacheri, V.; Michlits, G.; Seery, M. K.; Hinder, S. J.; Pillai, S. C. A highly efficient TiO2-xCx nano-heterojunction photocatalyst for visible light induced antibacterial applications. ACS Appl. Mater. Interfaces 2013, 5, 1663-1672.

51

Yan, M.; Wu, Y. L.; Yan, Y.; Yan, X.; Zhu, F. F.; Hua, Y. Q.; Shi, W. D. Synthesis and characterization of novel BiVO4/Ag3VO4 heterojunction with enhanced visible-light-driven photocatalytic degradation of dyes. ACS Sustainable Chem. Eng. 2016, 4, 757-766.

52

Giannakopoulou, T.; Papailias, I.; Todorova, N.; Boukos, N.; Liu, Y.; Yu, J. G.; Trapalis, C. Tailoring the energy band gap and edges' potentials of g-C3N4/TiO2 composite photocatalysts for NOx removal. Chem. Eng. J. 2017, 310, 571-580.

53

Wang, S. M.; Li, D. L.; Sun, C.; Yang, S. G.; Guan, Y.; He, H. Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation. Appl. Catal. B: Environ. 2014, 144, 885-892.

54

Munshi, A. M.; Shi, M. W.; Thomas, S. P.; Saunders, M.; Spackman, M. A.; Iyer, K. S.; Smith, N. M. Magnetically recoverable Fe3O4@Au-coated nanoscale catalysts for the A3-coupling reaction. Dalton Trans. 2017, 46, 5133-5137.

55

Cole-Hamilton, D. J. Homogeneous catalysis—New approaches to catalyst separation, recovery, and recycling. Science 2003, 299, 1702-1706.

56

Robert, D.; Keller, V.; Keller, N. Immobilization of a semiconductor photocatalyst on solid supports: Methods, materials, and applications. In Photocatalysis and Water Purification: From Fundamentals to Recent Applications; Pichat, P., Ed.; Wiley-VCH: Weinheim, Germany, 2013; pp 145-178.

57

Gao, F. Q.; Yang, Y.; Wang, T. H. Preparation of porous TiO2/Ag heterostructure films with enhanced photocatalytic activity. Chem. Eng. J. 2015, 270, 418-427.

58

Park, S.; Choi, G. R.; Lee, J. C.; Kim, Y. C.; Oh, D.; Cho, S.; Lee, J. -H. Organic and inorganic binder-coating properties for immobilization of photocatalytic ZnO nanopowders. Res. Chem. Intermediat. 2010, 36, 819-825.

59

Nasr-Esfahani, M.; Habibi, M. H. Silver doped TiO2 nanostructure composite photocatalyst film synthesized by sol-gel spin and dip coating technique on glass. Int. J. Photoenergy 2008, 2008, Article ID 628713.

60

Shen, Y. H.; Yu, X.; Lin, W. T.; Zhu, Y.; Zhang, Y. M. A facile preparation of immobilized BiOCl nanosheets/TiO2 arrays on FTO with enhanced photocatalytic activity and reusability. Appl. Surf. Sci. 2017, 399, 67-76.

61

Ohtani, B. Photocatalysis A to Z—What we know and what we do not know in a scientific sense. J. Photochem. Photobiol. C: Photochem. Rev. 2010, 11, 157-178.

62

Tang, J. X.; Lee, C. S.; Lee, S. T. Electronic structures of organic/organic heterojunctions: From vacuum level alignment to Fermi level pinning. J. Appl. Phys. 2007, 101, 064504.

63

Shi, S.; Gondal, M. A.; Rashid, S. G.; Qi, Q.; Al-Saadi, A. A.; Yamani, Z. H.; Sui, Y. H.; Xu, Q. Y.; Shen, K. Synthesis of g-C3N4/BiOClxBr1-x hybrid photocatalysts and the photoactivity enhancement driven by visible light. Colloids Surf. A: Physicochem. Eng. Asp. 2014, 461, 202-211.

64

Huang, H. W.; Han, X.; Li, X. W.; Wang, S. C.; Chu, P. K.; Zhang, Y. H. Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr-BiOI full-range composites based on microstructure modulation and band structures. ACS Appl. Mater. Interfaces 2015, 7, 482-492.

65

Pan, D. Y.; Jiao, J. K.; Li, Z.; Guo, Y. T.; Feng, C. Q.; Liu, Y.; Wang, L.; Wu, M. H. Efficient separation of electron-hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation. ACS Sustainable Chem. Eng. 2015, 3, 2405-2413.

66

Zhang, W.; Hu, C.; Zhai, W.; Wang, Z. L.; Sun, Y. X.; Chi, F. L.; Ran, S. L.; Liu, X. G.; Lv, Y. H. Novel Ag3PO4/CeO2 p-n hierarchical heterojunction with enhanced photocatalytic performance. Mat. Res. 2016, 19, 673-679.

67

Xu, W. C.; Fang, J. Z.; Zhu, X. M.; Fang, Z. Q.; Cen, C. P. Fabricaion of improved novel p-n junction BiOI/Bi2Sn2O7 nanocomposite for visible light driven photocatalysis. Mater. Res. Bull. 2015, 72, 229-234.

68

Ida, S.; Takashiba, A.; Koga, S.; Hagiwara, H.; Ishihara, T. Potential gradient and photocatalytic activity of an ultrathin p-n junction surface prepared with two-dimensional semiconducting nanocrystals. J. Am. Chem. Soc. 2014, 136, 1872-1878.

69

Bard, A. J.; Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995, 28, 141-145.

70

Ma, D.; Wu, J.; Gao, M. C.; Xin, Y. J.; Sun, Y. Y.; Ma, T. J. Hydrothermal synthesis of an artificial Z-scheme visible light photocatalytic system using reduced graphene oxide as the electron mediator. Chem. Eng. J. 2017, 313, 1567-1576.

71

Zangeneh, H.; Zinatizadeh, A. A. L.; Habibi, M.; Akia, M.; Hasnain Isa, M. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. J. Ind. Eng. Chem. 2015, 26, 1-36.

72

Shukla, K.; Srivastava, V. C. Diethyl carbonate: Critical review of synthesis routes, catalysts used and engineering aspects. RSC Adv. 2016, 6, 32624-32645.

73

Gaya, U. I.; Abdullah, A. H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C: Photochem. Rev. 2008, 9, 1-12.

74

Guettaï, N.; Amar, H. A. Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part Ⅰ: Parametric study. Desalination 2005, 185, 427-437.

75

Anwer, H.; Park, J. -W. Synthesis and characterization of a heterojunction rGO/ZrO2/Ag3PO4 nanocomposite for degradation of organic contaminants. J. Hazard. Mater. 2018, 358, 416-426.

76

Nguyen-Phan, T. -D.; Pham, V. H.; Shin, E. W.; Pham, H. -D.; Kim, S.; Chung, J. S.; Kim, E. J.; Hur, S. H. The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem. Eng. J. 2011, 170, 226-232.

77

Bizani, E.; Fytianos, K.; Poulios, I.; Tsiridis, V. Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide. J. Hazard. Mater. 2006, 136, 85-94.

78

Tan, R.; Shen, Y.; Roberts, S. K.; Gee, M. Y.; Blom, D. A.; Greytak, A. B. Reducing competition by coordinating solvent promotes morphological control in alternating layer growth of CdSe/CdS core/shell quantum dots. Chem. Mater. 2015, 27, 7468-7480.

79

Xu, Z.; Liu, X. X.; Wang, W. P.; Liu, C.; Li, Z. C.; Zhang, Z. J. Enhanced photoelectrochemical properties of TiO2 nanorod arrays decorated with CdS nanoparticles. Sci. Technol. Adv. Mater. 2014, 15, 055006.

80

Cassano, A. E.; Alfano, O. M. Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catal. Today 2000, 58, 167-197.

81

Muruganandham, M.; Swaminathan, M. TiO2-UV photocatalytic oxidation of Reactive Yellow 14: Effect of operational parameters. J. Hazard. Mater. 2006, 135, 78-86.

82

Bhati, I.; Punjabi, P. B.; Ameta, S. C. Photocatalytic degradation of fast green using nanosized CeCrO3. Maced. J. Chem. Chem. Eng. 2010, 29, 195-202.

83

Elaziouti; Laouedj, N.; Ahmed, B. ZnO-assisted photocatalytic degradation of Congo Red and Benzopurpurine 4B in aqueous solution. J. Chem. Eng. Process Technol. 2011, 2, 106.

84

Lü, W.; Chen, J.; Wu, Y.; Duan, L. F.; Yang, Y.; Ge, X. Graphene-enhanced visible-light photocatalysis of large-sized CdS particles for wastewater treatment. Nanoscale Res. Lett. 2014, 9, 148.

85

Zhang, A. -Y.; Wang, W. -K.; Pei, D. -N.; Yu, H. -Q. Degradation of refractory pollutants under solar light irradiation by a robust and self-protected ZnO/CdS/TiO2 hybrid photocatalyst. Water Res. 2016, 92, 78-86.

86

Li, X. R.; Wang, J. G.; Men, Y.; Bian, Z. F. TiO2 mesocrystal with exposed (001) facets and CdS quantum dots as an active visible photocatalyst for selective oxidation reactions. Appl. Catal. B: Environ. 2016, 187, 115-121.

87

Bhandari, S.; Vardia, J.; Malkani, R. K.; Ameta, S. C. Effect of transition metal ions on photocatalytic activity of ZnO in bleaching of some dyes. Toxicol. Environ. Chem. 2006, 88, 35-44.

88

Dariani, R. S.; Esmaeili, A.; Mortezaali, A.; Dehghanpour, S. Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik 2016, 127, 7143-7154.

89

Chu, C. -Y.; Huang, M. H. Facet-dependent photocatalytic properties of Cu2O crystals probed by using electron, hole and radical scavengers. J. Mater. Chem. A 2017, 5, 15116-15123.

90

Meng, L. S.; Chen, Z. Y.; Ma, Z. Y.; He, S.; Hou, Y. D.; Li, H. -H.; Yuan, R. S.; Huang, X. -H.; Wang, X. X.; Wang, X. C. et al. Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces. Energy Environ. Sci. 2018, 11, 294-298.

91

Mena, E.; Rey, A.; Rodríguez, E. M.; Beltrán, F. J. Reaction mechanism and kinetics of DEET visible light assisted photocatalytic ozonation with WO3 catalyst. Appl. Catal. B: Environ. 2017, 202, 460-472.

92

Chen, C. C.; Zhao, W.; Li, J. Y.; Zhao, J. C.; Hidaka, H.; Serpone, N. Formation and identification of intermediates in the visible-light-assisted photodegradation of sulforhodamine-B dye in aqueous TiO2 dispersion. Environ. Sci. Technol. 2002, 36, 3604-3611.

93

Bui, T. D.; Kimura, A.; Ikeda, S.; Matsumura, M. Lowering of photocatalytic activity of TiO2 particles during oxidative decomposition of benzene in aerated liquid. Appl. Catal. B: Environ. 2010, 94, 186-191.

94

Naeher, L. P.; Brauer, M.; Lipsett, M.; Zelikoff, J. T.; Simpson, C. D.; Koenig, J. Q.; Smith, K. R. Woodsmoke health effects: A review. Inhal. Toxicol. 2007, 19, 67-106.

95

Hao, X. Q.; Jin, Z. L.; Yang, H.; Lu, G. X.; Bi, Y. P. Peculiar synergetic effect of MoS2 quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2017, 210, 45-56.

96

He, L.; Li, M. X.; Xu, H. X.; Hu, B. Experimental studies on magnetization in the excited state by using the magnetic field effect of light scattering based on multi-layer graphene particles suspended in organic solvents. Nanoscale 2017, 9, 2563-2568.

97

Bolton, J. R.; Bircher, K. G.; Tumas, W.; Tolman, C. A. Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems. Pure Appl. Chem. 2001, 73, 627-637.

98

International Atomic Energy Agency. Use of Irradiation for Chemical and Microbial Decontamination of Water, Wastewater and Sludge; International Atomic Energy Agency: Vienna, 2001.

99

Serpone, N. Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. J. Photochem. Photobiol. A: Chem. 1997, 104, 1-12.

100

Serpone, N.; Salinaro, A. Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part Ⅰ: Suggested protocol. Pure Appl. Chem. 1999, 71, 303-320.

101

Xing, M. Y.; Zhang, J. H.; Qiu, B. C.; Tian, B. Z.; Anpo, M.; Che, M. A brown mesoporous TiO2-x/MCF composite with an extremely high quantum yield of solar energy photocatalysis for H2 evolution. Small 2015, 11, 1920-1929.

102

Qu, A. L.; Xie, H. L.; Xu, X. M.; Zhang, Y. Y.; Wen, S. W.; Cui, Y. F. High quantum yield graphene quantum dots decorated TiO2 nanotubes for enhancing photocatalytic activity. Appl. Surf. Sci. 2016, 375, 230-241.

103

Ling, L.; Tugaoen, H.; Brame, J.; Sinha, S.; Li, C. H.; Schoepf, J.; Hristovski, K.; Kim, J. -H.; Shang, C.; Westerhoff, P. Coupling light emitting diodes with photocatalyst-coated optical fibers improves quantum yield of pollutant oxidation. Environ. Sci. Technol. 2017, 51, 13319-13326.

104

Anwer, H.; Park, J. -W. Near-infrared to visible photon transition by upconverting NaYF4: Yb3+, Gd3+, Tm3+@Bi2WO6 core@shell composite for bisphenol A degradation in solar light. Appl. Catal. B: Environ. 2019, 243, 438-447.

105

Schneider, J.; Bahnemann, D.; Ye, J. H.; Puma, G. L.; Dionysiou, D. D. Photocatalysis: Fundamentals and Perspectives; Royal Society of Chemistry: Cambridge, 2016.

DOI
106

Li, X. P.; Qi, F.; Xue, Y. M.; Yu, C.; Jia, H. C.; Bai, Y. H.; Wang, S.; Liu, Z. Y.; Zhang, J.; Tang, C. C. Porous boron nitride coupled with CdS for adsorption-photocatalytic synergistic removal of RhB. RSC Adv. 2016, 6, 99165-99171.

107

Liu, X.; Jin, A. L.; Jia, Y. S.; Xia, T. L.; Deng, C. X.; Zhu, M. H.; Chen, C. F.; Chen, X. S. Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4. Appl. Surf. Sci. 2017, 405, 359-371.

108

Vinodgopal, K.; Wynkoop, D. E.; Kamat, P. V. Environmental photochemistry on semiconductor surfaces: Photosensitized degradation of a textile azo dye, acid orange 7, on TiO2 particles using visible light. Environ. Sci. Technol. 1996, 30, 1660-1666.

109

Chen, F.; Xie, Y. D.; Zhao, J. C.; Lu, G. X. Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation. Chemosphere 2001, 44, 1159-1168.

110

Lachheb, H.; Puzenat, E.; Houas, A.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J. -M. Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl. Catal. B: Environ. 2002, 39, 75-90.

111

Saquib, M.; Abu Tariq, M.; Faisal, M.; Muneer, M. Photocatalytic degradation of two selected dye derivatives in aqueous suspensions of titanium dioxide. Desalination 2008, 219, 301-311.

112

Aguedach, A.; Brosillon, S.; Morvan, J.; Lhadi, E. K. Photocatalytic degradation of azo-dyes reactive black 5 and reactive yellow 145 in water over a newly deposited titanium dioxide. Appl. Catal. B: Environ. 2005, 57, 55-62.

113

Sakthivel, S.; Neppolian, B.; Shankar, M. V.; Arabindoo, B.; Palanichamy, M.; Murugesan, V. Solar photocatalytic degradation of azo dye: Comparison of photocatalytic efficiency of ZnO and TiO2. Sol. Energ. Mat. Sol. C. 2003, 77, 65-82.

114

Behnajady, M. A.; Modirshahla, N.; Hamzavi, R. Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater. 2006, 133, 226-232.

115

Nagaraja, R.; Kottam, N.; Girija, C. R.; Nagabhushana, B. M. Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route. Powder Technol. 2012, 215-216, 91-97.

116

Tian, C. G.; Zhang, Q.; Wu, A. P.; Jiang, M. J.; Liang, Z. L.; Jiang, B. J.; Fu, H. G. Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem. Commun. 2012, 48, 2858-2860.

117

Kansal, S. K.; Singh, M.; Sud, D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J. Hazard. Mater. 2007, 141, 581-590.

118

Neppolian, B.; Choi, H. C.; Sakthivel, S.; Arabindoo, B.; Murugesan, V. Solar/UV-induced photocatalytic degradation of three commercial textile dyes. J. Hazard. Mater. 2002, 89, 303-317.

119

Mohamed, M. M.; Ahmed, S. A.; Khairou, K. S. Unprecedented high photocatalytic activity of nanocrystalline WO3/NiWO4 hetero-junction towards dye degradation: Effect of template and synthesis conditions. Appl. Catal. B: Environ. 2014, 150-151, 63-73.

120

Han, C. C.; Ge, L.; Chen, C. F.; Li, Y. J.; Xiao, X. L.; Zhang, Y. N.; Guo, L. L. Novel visible light induced Co3O4-g-C3N4 heterojunction photocatalysts for efficient degradation of methyl orange. Appl. Catal. B: Environ. 2014, 147, 546-553.

121

Chen, L.; Yin, S. -F.; Luo, S. -L.; Huang, R.; Zhang, Q.; Hong, T.; Au, P. C. T. Bi2O2CO3/BiOI photocatalysts with heterojunctions highly efficient for visible-light treatment of dye-containing wastewater. Ind. Eng. Chem. Res. 2012, 51, 6760-6768.

122

He, Y. M.; Zhang, L. H.; Fan, M. H.; Wang, X. X.; Walbridge, M. L.; Nong, Q. Y.; Wu, Y.; Zhao, L. H. Z-scheme SnO2-x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Sol. Energ. Mat. Sol. C. 2015, 137, 175-184.

123

Liu, Y.; Shi, Y. D.; Liu, X.; Li, H. X. A facile solvothermal approach of novel Bi2S3/TiO2/RGO composites with excellent visible light degradation activity for methylene blue. Appl. Surf. Sci. 2017, 396, 58-66.

124

Reddy, K. H.; Martha, S.; Parida, K. M. Fabrication of novel p-BiOI/ n-ZnTiO3 heterojunction for degradation of rhodamine 6G under visible light irradiation. Inorg. Chem. 2013, 52, 6390-6401.

125

Wang, W. J.; Cheng, H. F.; Huang, B. B.; Lin, X. J.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Synthesis of Bi2O2CO3/Bi2S3 hierarchical microspheres with heterojunctions and their enhanced visible light-driven photocatalytic degradation of dye pollutants. J. Colloid Interface Sci. 2013, 402, 34-39.

126

Di, J.; Xia, J. X.; Yin, S.; Xu, H.; Xu, L.; Xu, Y. G.; He, M. Q.; Li, H. M. Preparation of sphere-like g-C3N4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants. J. Mater. Chem. A 2014, 2, 5340-5351.

127

Wang, S. M.; Guan, Y.; Wang, L. P.; Zhao, W.; He, H.; Xiao, J.; Yang, S. G.; Sun, C. Fabrication of a novel bifunctional material of BiOI/Ag3VO4 with high adsorption-photocatalysis for efficient treatment of dye wastewater. Appl. Catal. B: Environ. 2015, 168-169, 448-457.

128

Li, Z. S.; Yang, S. Y.; Zhou, J. M.; Li, D. H.; Zhou, X. F.; Ge, C. Y.; Fang, Y. P. Novel mesoporous g-C3N4 and BiPO4 nanorods hybrid architectures and their enhanced visible-light-driven photocatalytic performances. Chem. Eng. J. 2014, 241, 344-351.

129

Zhan, W. T.; Ni, H. W.; Chen, R. S.; Wang, Z. Y.; Li, Y. W.; Li, J. H. One-step hydrothermal preparation of TiO2/WO3 nanocomposite films on anodized stainless steel for photocatalytic degradation of organic pollutants. Thin Solid Films 2013, 548, 299-305.

130

Zheng, F.; Lu, H.; Guo, M.; Zhang, M.; Zhen, Q. Hydrothermal preparation of WO3 nanorod array and ZnO nanosheet array composite structures on FTO substrates with enhanced photocatalytic properties. J. Mater. Chem. C 2015, 3, 7612-7620.

131

Gao, Y.; Liu, H. T. Preparation and catalytic property study of a novel kind of suspended photocatalyst of TiO2-activated carbon immobilized on silicone rubber film. Mater. Chem. Phys. 2005, 92, 604-608.

132

Wang, H. -J.; Sun, Y. -Y.; Wang, C. -F.; Cao, Y. Controlled synthesis, cytotoxicity and photocatalytic comparison of ZnO films photocatalysts supported on aluminum matrix. Chem. Eng. J. 2012, 198-199, 154-162.

133

Liu, Z. S.; Wu, B. T.; Niu, J. N.; Huang, X.; Zhu, Y. B. Solvothermal synthesis of BiOBr thin film and its photocatalytic performance. Appl. Surf. Sci. 2014, 288, 369-372.

134

Zhang, Y. R.; Wan, J.; Ke, Y. Q. A novel approach of preparing TiO2 films at low temperature and its application in photocatalytic degradation of methyl orange. J. Hazard. Mater. 2010, 177, 750-754.

135

Arconada, N.; Castro, Y.; Durán, A. Photocatalytic properties in aqueous solution of porous TiO2-anatase films prepared by sol-gel process. Appl. Catal. A: Gen. 2010, 385, 101-107.

136

Zhang, X. F.; Li, R.; Wang, Y. F.; Zhang, X. C.; Wang, Y. W.; Fan, C. M. Slow-releasing Cl- to prepare BiOCl thin film on Bi plate and its photocatalytic properties. Mater. Lett. 2016, 174, 126-128.

137

Li, K.; Tang, Y. P.; Xu, Y. L.; Wang, Y. L.; Huo, Y. N.; Li, H. X.; Jia, J. P. A BiOCl film synthesis from Bi2O3 film and its UV and visible light photocatalytic activity. Appl. Catal. B: Environ. 2013, 140-141, 179-188.

138

Rapsomanikis, A.; Apostolopoulou, A.; Stathatos, E.; Lianos, P. Cerium-modified TiO2 nanocrystalline films for visible light photocatalytic activity. J. Photochem. Photobiol. A: Chem. 2014, 280, 46-53.

139

Mohamed, R. M.; Aazam, E. Synthesis and characterization of P-doped TiO2 thin-films for photocatalytic degradation of butyl benzyl phthalate under visible-light irradiation. Chinese J. Catal. 2013, 34, 1267-1273.

140

Uddin, M. T.; Nicolas, Y.; Olivier, C.; Toupance, T.; Servant, L.; Müller, M. M.; Kleebe, H. -J.; Ziegler, J.; Jaegermann, W. Nanostructured SnO2-ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes. Inorg. Chem. 2012, 51, 7764-7773.

141

Sun, M.; Chen, G. D.; Zhang, Y. K.; Wei, Q.; Ma, Z. M.; Du, B. Efficient degradation of azo dyes over Sb2S3/TiO2 heterojunction under visible light irradiation. Ind. Eng. Chem. Res. 2012, 51, 2897-2903.

142

Lu, W. Y.; Xu, T. F.; Wang, Y.; Hu, H. G.; Li, N.; Jiang, X. M.; Chen, W. X. Synergistic photocatalytic properties and mechanism of g-C3N4 coupled with zinc phthalocyanine catalyst under visible light irradiation. Appl. Catal. B: Environ. 2016, 180, 20-28.

143

Wang, W. Z.; Wang, J.; Wang, Z. Z.; Wei, X. Z.; Liu, L.; Ren, Q. S.; Gao, W. L.; Liang, Y. J.; Shi, H. L. p-n junction CuO/BiVO4 heterogeneous nanostructures: Synthesis and highly efficient visible-light photocatalytic performance. Dalton Trans. 2014, 43, 6735-6743.

144

Li, Y.; Liu, F. -T.; Chang, Y.; Wang, J.; Wang, C. -W. High efficient photocatalytic activity from nanostructuralized photonic crystal-like p-n coaxial hetero-junction film photocatalyst of Cu3SnS4/TiO2 nanotube arrays. Appl. Surf. Sci. 2017, 426, 770-780.

145

Peng, Y.; Yu, P. -P.; Zhou, H. -Y.; Xu, A. -W. Synthesis of BiOI/Bi4O5I2/ Bi2O2CO3 p-n-p heterojunctions with superior photocatalytic activities. New J. Chem. 2015, 39, 8321-8328.

146

Zha, R. H.; Nadimicherla, R.; Guo, X. Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO2/ZnO heterojunctions. J. Mater. Chem. A 2015, 3, 6565-6574.

147

Zhu, B. C.; Xia, P. F.; Li, Y.; Ho, W.; Yu, J. G. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst. Appl. Surf. Sci. 2017, 391, 175-183.

148

He, Y. M.; Zhang, L. H.; Wang, X. X.; Wu, Y.; Lin, H. J.; Zhao, L. H.; Weng, W. Z.; Wan, H. L.; Fan, M. H. Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3-g-C3N4 composite under visible light irradiation. RSC Adv. 2014, 4, 13610-13619.

149

Zhu, C. S.; Zhang, L.; Jiang, B.; Zheng, J. T.; Hu, P.; Li, S. J.; Wu, M. B.; Wu, W. T. Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation. Appl. Surf. Sci. 2016, 377, 99-108.

150

Apte, S. K.; Garaje, S. N.; Arbuj, S. S.; Kale, B. B.; Baeg, J. O.; Mulik, U. P.; Naik, S. D.; Amalnerkar, D. P.; Gosavi, S. W. A novel template free, one pot large scale synthesis of cubic zinc sulfide nanotriangles and its functionality as an efficient photocatalyst for hydrogen production and dye degradation. J. Mater. Chem. 2011, 21, 19241-19248.

151

Sharma, M.; Jain, T.; Singh, S.; Pandey, O. P. Photocatalytic degradation of organic dyes under UV-visible light using capped ZnS nanoparticles. Sol. Energy 2012, 86, 626-633.

152

Liu, Y. G.; Ohko, Y.; Zhang, R. Q.; Yang, Y. N.; Zhang, Z. Y. Degradation of malachite green on Pd/WO3 photocatalysts under simulated solar light. J. Hazard. Mater. 2010, 184, 386-391.

153

Zhang, J. Q.; Yu, K.; Yu, Y. F.; Lou, L. -L.; Yang, Z. Q.; Yang, J. W.; Liu, S. X. Highly effective and stable Ag3PO4/WO3 photocatalysts for visible light degradation of organic dyes. J. Mol. Catal. A: Chem. 2014, 391, 12-18.

154

Singh, S. A.; Madras, G. Photocatalytic degradation with combustion synthesized WO3 and WO3TiO2 mixed oxides under UV and visible light. Sep. Purif. Technol. 2013, 105, 79-89.

155

Reutergådh, L. B.; Iangphasuk, M. Photocatalytic decolourization of reactive azo dye: A comparison between TiO2 and US photocatalysis. Chemosphere 1997, 35, 585-596.

156

Yu, Z.; Yin, B. S.; Qu, F. Y.; Wu, X. Synthesis of self-assembled CdS nanospheres and their photocatalytic activities by photodegradation of organic dye molecules. Chem. Eng. J. 2014, 258, 203-209.

157

Repo, E.; Rengaraj, S.; Pulkka, S.; Castangnoli, E.; Suihkonen, S.; Sopanen, M.; Sillanpää, M. Photocatalytic degradation of dyes by CdS microspheres under near UV and blue LED radiation. Sep. Purif. Technol. 2013, 120, 206-214.

158

Soltani, N.; Saion, E.; Yunus, W. M. M.; Erfani, M.; Navasery, M.; Bahmanrokh, G.; Rezaee, K. Enhancement of visible light photocatalytic activity of ZnS and CdS nanoparticles based on organic and inorganic coating. Appl. Surf. Sci. 2014, 290, 440-447.

159

Tong, T. Z.; Zhang, J. L.; Tian, B. Z.; Chen, F.; He, D. N. Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. J. Hazard. Mater. 2008, 155, 572-579.

160

Chen, J. F.; Zhong, J. B.; Li, J. Z.; Huang, S. T.; Hu, W.; Li, M. J.; Du, Q. Synthesis and characterization of novel Ag2CO3/g-C3N4 composite photocatalysts with excellent solar photocatalytic activity and mechanism insight. Mol. Catal. 2017, 435, 91-98.

161

Liu, T. Y.; Liu, B.; Yang, L. F.; Ma, X. L.; Li, H.; Yin, S.; Sato, T.; Sekino, T.; Wang, Y. H. RGO/Ag2S/TiO2 ternary heterojunctions with highly enhanced UV-NIR photocatalytic activity and stability. Appl. Catal. B: Environ. 2017, 204, 593-601.

162

Jiang, Y. H.; Liu, P. P.; Liu, Y.; Liu, X. F.; Li, F.; Ni, L.; Yan, Y. S.; Huo, P. W. Construction of amorphous Ta2O5/g-C3N4 nanosheet hybrids with superior visible-light photoactivities for organic dye degradation and mechanism insight. Sep. Purif. Technol. 2016, 170, 10-21.

163

Tang, B.; Chen, H. Q.; He, Y. F.; Wang, Z. W.; Zhang, J.; Wang, J. P. Influence from defects of three-dimensional graphene network on photocatalytic performance of composite photocatalyst. Compos. Sci. Technol. 2017, 150, 54-64.

164

Nguyen-Phan, T. -D.; Pham, V. H.; Yun, H.; Kim, E. J.; Hur, S. H.; Chung, J. S.; Shin, E. W. Influence of heat treatment on thermally-reduced graphene oxide/TiO2 composites for photocatalytic applications. Korean J. Chem. Eng. 2011, 28, 2236-2241.

165

Singh, S.; Khare, N. Reduced graphene oxide coupled CdS/CoFe2O4 ternary nanohybrid with enhanced photocatalytic activity and stability: A potential role of reduced graphene oxide as a visible light responsive photosensitizer. RSC Adv. 2015, 5, 96562-96572.

166

Ganesh, I.; Gupta, A. K.; Kumar, P. P.; Sekhar, P. S. C.; Radha, K.; Padmanabham, G.; Sundararajan, G. Preparation and characterization of Ni-doped TiO2 materials for photocurrent and photocatalytic applications. Sci. World J. 2012, 2012, 127326.

167

Pawar, R. C.; Khare, V.; Lee, C. S. Hybrid photocatalysts using graphitic carbon nitride/cadmium sulfide/reduced graphene oxide (g-C3N4/CdS/RGO) for superior photodegradation of organic pollutants under UV and visible light. Dalton Trans. 2014, 43, 12514-12527.

Publication history
Copyright
Acknowledgements

Publication history

Received: 22 September 2018
Revised: 27 December 2018
Accepted: 03 January 2019
Published: 17 January 2019
Issue date: May 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

K. H. K. and J. W. P. acknowledge support made by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, & Future Planning Grant Nos. 2016R1E1A1A01940995 and 2018R1A2A1A05023555, respectively.

Return