Journal Home > Volume 12 , Issue 4

The application of nanoparticles as selective drug delivery platforms arises as one the most promising therapeutic strategies in the biomedical field. Such systems can encapsulate drugs, prevent its premature degradation, transport and promote the drugs specific delivery to the target site. Among the different nanostructures, gold-core mesoporous silica shell (AuMSS) nanorods have been one of the most explored due to their unique physical and chemical properties. The mesoporous silica biocompatibility, high surface area that can be easily functionalized, tubular pores that can store the drugs, conjugated with the intrinsic capacity of gold nanorod to absorb near-infrared radiation, allows the combination of hyperthermia (i.e., photothermal effect) with drug delivery, making them a nanoplatforms with a huge potential for cancer therapy. Nevertheless, the successful application of AuMSS nanoparticles as an effective cancer nanomedicine is hindered by the uncontrolled release of the therapeutic payloads, limited blood circulation time and unfavorable pharmacokinetics.

In this review, an overview of the modifications performed to improve the AuMSS nanorods application in nanomedicine is provided, highlighting the practical approaches that enhanced the AuMSS nanorods targeting, responsiveness to different stimuli, and blood circulation time. Further, the basics of AuMSS nanorods synthesis procedures, general properties, and its application in cancer therapy are also described.


menu
Abstract
Full text
Outline
About this article

Functionalization of AuMSS nanorods towards more effective cancer therapies

Show Author's information Carolina F. Rodrigues1,§Telma A. Jacinto1,§André F. Moreira1,§Elisabete C. Costa1Sónia P. Migue1IIídio J. Correia1,2( )
CICS-UBI — Centro de Investigação em Ciências da Saúde,Universidade da Beira Interior,Covilhã,6200-506,Portugal;
CIEPQF — Departamento de Engenharia Química,Universidade de Coimbra, Rua 13 Sílvio Lima,Coimbra,3030-790,Portugal;

§ Carolina F. Rodrigues, Telma A. Jacinto, and André F. Moreira contributed equally to this work.

Abstract

The application of nanoparticles as selective drug delivery platforms arises as one the most promising therapeutic strategies in the biomedical field. Such systems can encapsulate drugs, prevent its premature degradation, transport and promote the drugs specific delivery to the target site. Among the different nanostructures, gold-core mesoporous silica shell (AuMSS) nanorods have been one of the most explored due to their unique physical and chemical properties. The mesoporous silica biocompatibility, high surface area that can be easily functionalized, tubular pores that can store the drugs, conjugated with the intrinsic capacity of gold nanorod to absorb near-infrared radiation, allows the combination of hyperthermia (i.e., photothermal effect) with drug delivery, making them a nanoplatforms with a huge potential for cancer therapy. Nevertheless, the successful application of AuMSS nanoparticles as an effective cancer nanomedicine is hindered by the uncontrolled release of the therapeutic payloads, limited blood circulation time and unfavorable pharmacokinetics.

In this review, an overview of the modifications performed to improve the AuMSS nanorods application in nanomedicine is provided, highlighting the practical approaches that enhanced the AuMSS nanorods targeting, responsiveness to different stimuli, and blood circulation time. Further, the basics of AuMSS nanorods synthesis procedures, general properties, and its application in cancer therapy are also described.

Keywords: silica, gold nanorods, cancer, targeting, surface modifications

References(115)

1

Pelaz, B.; Alexiou, C.; Alvarez-Puebla, R. A.; Alves, F.; Andrews, A. M.; Ashraf, S.; Balogh, L. P.; Ballerini, L.; Bestetti, A.; Brendel, C. et al. Diverse applications of nanomedicine. ACS Nano 2017, 11, 2313-2381.

2

Loureiro, J. A.; Gomes, B.; Fricker, G.; Coelho, M. A. N.; Rocha, S.; Pereira, M. C. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer's disease treatment. Colloids Surf. B Biointerfaces 2016, 145, 8-13.

3

Wang, N.; Jin, X.; Guo, D. B.; Tong, G. S.; Zhu, X. Y. Iron chelation nanoparticles with delayed saturation as an effective therapy for Parkinson disease. Biomacromolecules 2016, 18, 461-474.

4

Moreira, A. F.; Gaspar, V. M.; Costa, E. C.; de Melo-Diogo, D.; Machado, P.; Paquete, C. M.; Correia, I. J. Preparation of end-capped pH-sensitive mesoporous silica nanocarriers for on-demand drug delivery. Eur. J. Pharm. Biopharm. 2014, 88, 1012-1025.

5

Moreira, A. F.; Dias, D. R.; Correia, I. J. Stimuli-responsive mesoporous silica nanoparticles for cancer therapy: A review. Microporous Mesoporous Mater. 2016, 236, 141-157.

6

Brannon-Peppas, L.; Blanchette, J. O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Delivery Rev. 2012, 64, 206-212.

7

Abbas, M.; Zou, Q. L.; Li, S. K.; Yan, X. H. Self-assembled peptide-and protein-based nanomaterials for antitumor photodynamic and photothermal therapy. Adv. Mater. 2017, 29, 1605021.

8

Moreira, A. F.; Rodrigues, C. F.; Reis, C. A.; Costa, E. C.; Correia, I. J. Gold-core silica shell nanoparticles application in imaging and therapy: A review. Microporous Mesoporous Mater. 2018, 270, 168-179.

9

Huff, T. B.; Tong, L.; Zhao, Y.; Hansen, M. N.; Cheng, J. X.; Wei, A. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2007, 2, 125-132.

10

Hemmer, E.; Benayas, A.; Légaré, F.; Vetrone, F. Exploiting the biological windows: Current perspectives on fluorescent bioprobes emitting above 1, 000 nm. Nanoscale Horiz. 2016, 1, 168-184.

11

Yao, X. X.; Niu, X. X.; Ma, K. X.; Huang, P.; Grothe, J.; Kaskel, S.; Zhu, Y. F. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small 2017, 13, 1602225.

12

Li, Y. T.; Jin, J.; Wang, D. W.; Lv, J. W.; Hou, K.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Coordination-responsive drug release inside gold nanorod@metal-organic framework core-shell nanostructures for near-infrared-induced synergistic chemo-photothermal therapy. Nano Res. 2018, 11, 3294-3305.

13

Jiang, Y. Y.; Cui, D.; Fang, Y.; Zhen, X.; Upputuri, P. K.; Pramanik, M.; Ding, D.; Pu, K. Y. Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy. Biomaterials 2017, 145, 168-177.

14

Cheng, X. J.; Sun, R.; Yin, L.; Chai, Z. F.; Shi, H. B.; Gao, M. Y. Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo. Adv. Mater. 2017, 29, 1604894.

15

Kim, H. S.; Lee, D. Y. Photothermal therapy with gold nanoparticles as an anticancer medication. J. Pharm. Invest. 2017, 47, 19-26.

16

Dias, D. R.; Moreira, A. F.; Correia, I. J. The effect of the shape of gold core-mesoporous silica shell nanoparticles on the cellular behavior and tumor spheroid penetration. J. Mater. Chem. B 2016, 4, 7630-7640.

17

Wang, S. W.; Xi, W.; Cai, F. H.; Zhao, X. Y.; Xu, Z. P.; Qian, J.; He, S. L. Three-photon luminescence of gold nanorods and its applications for high contrast tissue and deep in vivo brain imaging. Theranostics 2015, 5, 251-266.

18

Chen, J. Y.; Wang, D. L.; Xi, J. F.; Au, L.; Siekkinen, A.; Warsen, A.; Li, Z. Y.; Zhang, H.; Xia, Y. N.; Li, X. D. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 2007, 7, 1318-1322.

19

Yuan, H.; Fales, A. M.; Vo-Dinh, T. TAT peptide-functionalized gold nanostars: Enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J. Am. Chem. Soc. 2012, 134, 11358-11361.

20

Han, L.; Zhang, Y.; Zhang, Y.; Shu, Y.; Chen, X. W.; Wang, J. H. A magnetic polypyrrole/iron oxide core/gold shell nanocomposite for multimodal imaging and photothermal cancer therapy. Talanta 2017, 171, 32-38.

21

Yang, X.; Yang, M. X.; Pang, B.; Vara, M.; Xia, Y. N. Gold nanomaterials at work in biomedicine. Chem. Rev. 2015, 115, 10410-10488.

22

Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009, 38, 1759-1782.

23

Li, Z. T.; Zhu, Z. M.; Liu, W. J.; Zhou, Y. L.; Han, B.; Gao, Y.; Tang, Z. Y. Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J. Am. Chem. Soc. 2012, 134, 3322-3325.

24

Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103-1170.

25

Liu, J. Y.; Peng, Q. Protein-gold nanoparticle interactions and their possible impact on biomedical applications. Acta Biomater. 2017, 55, 13-27.

26

Aggarwal, P.; Hall, J. B.; McLeland, C. B.; Dobrovolskaia, M. A.; McNeil, S. E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Delivery Rev. 2009, 61, 428-437.

27

Lynch, I.; Dawson, K. A. Protein-nanoparticle interactions. Nano Today 2008, 3, 40-47.

28

Chen, Y. S.; Frey, W.; Kim, S.; Homan, K.; Kruizinga, P.; Sokolov, K.; Emelianov, S. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt. Express 2010, 18, 8867-8878.

29

Tang, F. Q.; Li, L. L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504-1534.

30

Pan, L. M.; He, Q. J.; Liu, J. N.; Chen, Y.; Ma, M.; Zhang, L. L.; Shi, J. L. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc. 2012, 134, 5722-5725.

31

Song, J. T.; Yang, X. Q.; Zhang, X. S.; Yan, D. M.; Wang, Z. Y.; Zhao, Y. D. Facile synthesis of gold nanospheres modified by positively charged mesoporous silica, loaded with near-infrared fluorescent dye, for in vivo X-ray computed tomography and fluorescence dual mode imaging. ACS Appl. Mater. Interfaces 2015, 7, 17287-17297.

32

Liu, S. H.; Han, M. Y. Synthesis, functionalization, and bioconjugation of monodisperse, silica-coated gold nanoparticles: Robust bioprobes. Adv. Funct. Mater. 2005, 15, 961-967.

33

Wu, W. C.; Tracy, J. B. Large-scale silica overcoating of gold nanorods with tunable shell thicknesses. Chem. Mater. 2015, 27, 2888-2894.

34

Tran, A. V.; Shim, K.; Thi, T. T. V.; Kook, J. K.; An, S. S. A.; Lee, S. W. Targeted and controlled drug delivery by multifunctional mesoporous silica nanoparticles with internal fluorescent conjugates and external polydopamine and graphene oxide layers. Acta Biomater. 2018, 74, 397-413.

35

Zhao, P. Q.; Li, L. F.; Zhou, S. Y.; Qiu, L. H.; Qian, Z. Z.; Liu, X. M.; Cao, X. C.; Zhang, H. L. TPGS functionalized mesoporous silica nanoparticles for anticancer drug delivery to overcome multidrug resistance. Mater. Sci. Eng. C 2018, 84, 108-117.

36

Xu, C.; Chen, F.; Valdovinos, H. F.; Jiang, D. W.; Goel, S.; Yu, B.; Sun, H. Y.; Barnhart, T. E.; Moon, J. J.; Cai, W. B. Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy. Biomaterials 2018, 165, 56-65.

37

Liu, Y.; Xu, M.; Chen, Q.; Guan, G. N.; Hu, W.; Zhao, X. L.; Qiao, M. X.; Hu, H. Y.; Liang, Y.; Zhu, H. Y. et al. Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser. Int. J. Nanomedicine 2015, 10, 4747-4761.

38

Qin, J. B.; Peng, Z. Y.; Li, B.; Ye, K. C.; Zhang, Y. X.; Yuan, F. K.; Yang, X. R.; Huang, L. J.; Hu, J. Q.; Lu, X. W. Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages. Nanoscale 2015, 7, 13991-14001.

39

Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740-2779.

40

Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957-1962.

41

Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J. Mater. Chem. 2002, 12, 1765-1770.

42

Gole, A.; Murphy, C. J. Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed. Chem. Mater. 2004, 16, 3633-3640.

43

Zhao, P. X.; Li, N.; Astruc, D. State of the art in gold nanoparticle synthesis. Coord. Chem. Rev. 2013, 257, 638-665.

44

Liu, M. Z.; Guyot-Sionnest, P. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J. Phys. Chem. B 2005, 109, 22192-22200.

45

Pérez-Juste, J.; Correa-Duarte, M. A.; Liz-Marzán, L. M. Silica gels with tailored, gold nanorod-driven optical functionalities. Appl. Surf. Sci. 2004, 226, 137-143.

46

Kobayashi, Y.; Correa-Duarte, M. A.; Liz-Marzán, L. M. Sol-gel processing of silica-coated gold nanoparticles. Langmuir 2001, 17, 6375-6379.

47

Mine, E.; Yamada, A.; Kobayashi, Y.; Konno, M.; Liz-Marzán, L. M. Direct coating of gold nanoparticles with silica by a seeded polymerization technique. J. Colloid Interface Sci. 2003, 264, 385-390.

48

Zhao, N.; Yang, Z. R.; Li, B. X.; Meng, J.; Shi, Z. L.; Li, P.; Fu, S. RGD-conjugated mesoporous silica-encapsulated gold nanorods enhance the sensitization of triple-negative breast cancer to megavoltage radiation therapy. Int. J. Nanomedicine 2016, 11, 5595-5610.

49

Hainfeld, J. F.; Slatkin, D. N.; Focella, T. M.; Smilowitz, H. M. Gold nanoparticles: A new X-ray contrast agent. Br. J. Radiol. 2006, 79, 248-253.

50

Hou, K.; Fixler, D.; Han, B.; Shi, L.; Feder, I.; Duadi, H.; Wang, X. L.; Tang, Z. Y. Towards in vivo tumor detection using polarization and wavelength characteristics of self-assembled gold nanorods. ChemNanoMat 2017, 3, 736-739.

51

Ashton, J. R.; Castle, K. D.; Qi, Y.; Kirsch, D. G.; West, J. L.; Badea, C. T. Dual-energy CT imaging of tumor liposome delivery after gold nanoparticle-augmented radiation therapy. Theranostics 2018, 8, 1782-1797.

52

Chen, Q.; Wang, H.; Liu, H.; Wen, S. H.; Peng, C.; Shen, M. W.; Zhang, G. X.; Shi, X. Y. Multifunctional dendrimer-entrapped gold nanoparticles modified with RGD peptide for targeted computed tomography/magnetic resonance dual-modal imaging of tumors. Anal. Chem. 2015, 87, 3949-3956.

53

Amendola, V.; Pilot, R.; Frasconi, M.; Marago, O. M.; Iati, M. A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter 2017, 29, 203002.

54

Shajari, D.; Bahari, A.; Gill, P.; Mohseni, M. Synthesis and tuning of gold nanorods with surface plasmon resonance. Opt. Mater. 2017, 64, 376-383.

55

Alkilany, A. M.; Thompson, L. B.; Boulos, S. P.; Sisco, P. N.; Murphy, C. J. Gold nanorods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Delivery Rev. 2012, 64, 190-199.

56

Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543-557.

57

Walkey, C. D.; Olsen, J. B.; Guo, H. B.; Emili, A.; Chan, W. C. W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 2012, 134, 2139-2147.

58

Lee, Y. K.; Choi, E. J.; Webster, T. J.; Kim, S. H.; Khang, D. Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity. Int. J. Nanomedicine 2015, 10, 97-113.

59

Kharazian, B.; Hadipour, N. L.; Ejtehadi, M. R. Understanding the nanoparticle-protein corona complexes using computational and experimental methods. Int. J. Biochem. Cell Biol. 2016, 75, 162-174.

60

Bertrand, N.; Grenier, P.; Mahmoudi, M.; Lima, E. M.; Appel, E. A.; Dormont, F.; Lim, J. M.; Karnik, R.; Langer, R.; Farokhzad, O. C. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat. Commun. 2017, 8, 777.

61

Steichen, S. D.; Caldorera-Moore, M.; Peppas, N. A. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur. J. Pharm. Sci. 2013, 48, 416-427.

62

Otsuka, H.; Nagasaki, Y.; Kataoka, K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Delivery Rev. 2012, 64, 246-255.

63

Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U. S. Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew. Chem. , Int. Ed. 2010, 49, 6288-6308.

64

Kolate, A.; Baradia, D.; Patil, S.; Vhora, I.; Kore, G.; Misra, A. PEG-A versatile conjugating ligand for drugs and drug delivery systems. J. Control. Release 2014, 192, 67-81.

65

Delgado, C.; Francis, G. E.; Fisher, D. The uses and properties of PEG-linked proteins. Crit. Rev. Ther. Drug Carrier Syst. 1992, 9, 249-304.

66

Fang, C.; Bhattarai, N.; Sun, C.; Zhang, M. Q. Functionalized nanoparticles with long-term stability in biological media. Small 2009, 5, 1637-1641.

67

Pozzi, D.; Colapicchioni, V.; Caracciolo, G.; Piovesana, S.; Capriotti, A. L.; Palchetti, S.; De Grossi, S.; Riccioli, A.; Amenitsch, H.; Laganà, A. Effect of polyethyleneglycol (PEG) chain length on the bio-nano-interactions between PEGylated lipid nanoparticles and biological fluids: From nanostructure to uptake in cancer cells. Nanoscale 2014, 6, 2782-2792.

68

Owens Ⅲ, D. E.; Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006, 307, 93-102.

69

Suk, J. S.; Xu, Q. G.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Delivery Rev. 2016, 99, 28-51.

70

DeRouchey, J.; Walker, G. F.; Wagner, E.; Rädler, J. O. Decorated rods: A "bottom-up" self-assembly of monomolecular DNA complexes. J. Phys. Chem. B 2006, 110, 4548-4554.

71

Yang, Q.; Jones, S. W.; Parker, C. L.; Zamboni, W. C.; Bear, J. E.; Lai, S. K. Evading immune cell uptake and clearance requires PEG grafting at densities substantially exceeding the minimum for brush conformation. Mol. Pharm. 2014, 11, 1250-1258.

72

Shen, S.; Tang, H. Y.; Zhang, X. T.; Ren, J. F.; Pang, Z. Q.; Wang, D. G.; Gao, H. L.; Qian, Y.; Jiang, X. G.; Yang, W. L. Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials 2013, 34, 3150-3158.

73

Wang, J.; Bai, R.; Yang, R.; Liu, J.; Tang, J. L.; Liu, Y.; Li, J. Y.; Chai, Z. F.; Chen, C. Y. Size-and surface chemistry-dependent pharmacokinetics and tumor accumulation of engineered gold nanoparticles after intravenous administration. Metallomics 2015, 7, 516-524.

74

Liu, J. J.; Liang, H. N.; Li, M. H.; Luo, Z.; Zhang, J. X.; Guo, X. M.; Cai, K. Y. Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy. Biomaterials 2018, 157, 107-124.

75

Ishida, T.; Atobe, K.; Wang, X. Y.; Kiwada, H. Accelerated blood clearance of PEGylated liposomes upon repeated injections: Effect of doxorubicin-encapsulation and high-dose first injection. J. Control. Release 2006, 115, 251-258.

76

Lila, A. S. A.; Kiwada, H.; Ishida, T. The accelerated blood clearance (ABC) phenomenon: Clinical challenge and approaches to manage. J. Control. Release 2013, 172, 38-47.

77

Konradi, R.; Pidhatika, B.; Mühlebach, A.; Textor, M. Poly-2-methyl-2-oxazoline: A peptide-like polymer for protein-repellent surfaces. Langmuir 2008, 24, 613-616.

78

Mero, A.; Pasut, G.; Dalla Via, L.; Fijten, M. W. M.; Schubert, U. S.; Hoogenboom, R.; Veronese, F. M. Synthesis and characterization of poly(2-ethyl-2-oxazoline)-conjugates with proteins and drugs: Suitable alternatives to PEG-conjugates? J. Control. Release 2008, 125, 87-95.

79

Koshkina, O.; Westmeier, D.; Lang, T.; Bantz, C.; Hahlbrock, A.; Würth, C.; Resch-Genger, U.; Braun, U.; Thiermann, R.; Weise, C. et al. Tuning the surface of nanoparticles: Impact of poly(2-ethyl-2-oxazoline) on protein adsorption in serum and cellular uptake. Macromol. Biosci. 2016, 16, 1287-1300.

80

Moreira, A. F.; Rodrigues, C. F.; Reis, C. A.; Costa, E. C.; Ferreira, P.; Correia, I. J. Development of poly-2-ethyl-2-oxazoline coated gold-core silica shell nanorods for cancer chemo-photothermal therapy. Nanomedicine 2018, 13, 3147-3166.

81

Moreira, A. F.; Dias, D. R.; Costa, E. C.; Correia, I. J. Thermo-and pH-responsive nano-in-micro particles for combinatorial drug delivery to cancer cells. Eur. J. Pharm. Sci. 2017, 104, 42-51.

82

Li, Y. H.; Hu, H.; Zhou, Q.; Ao, Y. X.; Xiao, C.; Wan, J. L.; Wan, Y.; Xu, H. B.; Li, Z. F.; Yang, X. L. α-Amylase-and redox-responsive nanoparticles for tumor-targeted drug delivery. ACS Appl. Mater. Interfaces 2017, 9, 19215-19230.

83

Zhang, C. Y.; Pan, D. Y.; Li, J.; Hu, J. N.; Bains, A.; Guys, N.; Zhu, H. Y.; Li, X. H.; Luo, K.; Gong, Q. Y. et al. Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Acta Biomater. 2017, 55, 153-162.

84

Li, H.; Tan, L. L.; Jia, P.; Li, Q. L.; Sun, Y. L.; Zhang, J.; Ning, Y. Q.; Yu, J. H.; Yang, Y. W. Near-infrared light-responsive supramolecular nanovalve based on mesoporous silica-coated gold nanorods. Chem. Sci. 2014, 5, 2804-2808.

85

Liu, J.; Detrembleur, C.; De Pauw-Gillet, M. C.; Mornet, S.; Jérôme, C.; Duguet, E. Gold nanorods coated with mesoporous silica shell as drug delivery system for remote near infrared light-activated release and potential phototherapy. Small 2015, 11, 2323-2332.

86

Tang, H. Y.; Shen, S.; Guo, J.; Chang, B. S.; Jiang, X. G.; Yang, W. L. Gold nanorods@mSiO2 with a smart polymer shell responsive to heat/ near-infrared light for chemo-photothermal therapy. J. Mater. Chem. 2012, 22, 16095-16103.

87

Lee, E. S.; Gao, Z. G.; Bae, Y. H. Recent progress in tumor pH targeting nanotechnology. J. Control. Release 2008, 132, 164-170.

88

Du, J. Z.; Lane, L. A.; Nie, S. M. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J. Control. Release 2015, 219, 205-214.

89

Vander Heiden, M. G.; Cantley, L. C.; Thompson, C. B. Understanding the warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029-1033.

90

Zhang, T.; Ding, Z. Y.; Lin, H. M.; Cui, L. R.; Yang, C. Y.; Li, X.; Niu, H.; An, N.; Tong, R. H.; Qu, F. Y. pH-sensitive gold nanorods with a mesoporous silica shell for drug release and photothermal therapy. Eur. J. Inorg. Chem. 2015, 2015, 2277-2284.

91

Zeiderman, M. R.; Morgan, D. E.; Christein, J. D.; Grizzle, W. E.; McMasters, K. M.; McNally, L. R. Acidic pH-targeted chitosan-capped mesoporous silica coated gold nanorods facilitate detection of pancreatic tumors via multispectral optoacoustic tomography. ACS Biomater. Sci. Eng. 2016, 2, 1108-1120.

92

Zhang, Z. H.; Liu, C. H.; Bai, J. H.; Wu, C. C.; Xiao, Y.; Li, Y. H.; Zheng, J.; Yang, R. H.; Tan, W. H. Silver nanoparticle gated, mesoporous silica coated gold nanorods (AuNR@MS@AgNPs): Low premature release and multifunctional cancer theranostic platform. ACS Appl. Mater. Interfaces 2015, 7, 6211-6219.

93

Zhang, Z. J.; Wang, J.; Nie, X.; Wen, T.; Ji, Y. L.; Wu, X. C.; Zhao, Y. L.; Chen, C. Y. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J. Am. Chem. Soc. 2014, 136, 7317-7326.

94

Baek, S.; Singh, R. K.; Kim, T. H.; Seo, J. W.; Shin, U. S.; Chrzanowski, W.; Kim, H. W. Triple hit with drug carriers: pH-and temperature-responsive theranostics for multimodal chemo-and photothermal therapy and diagnostic applications. ACS Appl. Mater. Interfaces 2016, 8, 8967-8979.

95

An, N.; Lin, H. M.; Qu, F. Y. Synthesis of a GNRs@mSiO2-ICG-DOX@Se-Se-FA nanocomposite for controlled chemo-/photothermal/ photodynamic therapy. Eur. J. Inorg. Chem. 2018, 2018, 4375-4384.

96

Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Delivery Rev. 2011, 63, 136-151.

97

Matsumoto, Y.; Nichols, J. W.; Toh, K.; Nomoto, T.; Cabral, H.; Miura, Y.; Christie, R. J.; Yamada, N.; Ogura, T.; Kano, M. R. et al. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nat. Nanotechnol. 2016, 11, 533-538.

98

Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20-37.

99

Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release 2000, 65, 271-284.

100

Danhier, F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Release 2016, 244, 108-121.

101

Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.

102

Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941-951.

103

Huang, P.; Bao, L.; Zhang, C. L.; Lin, J.; Luo, T.; Yang, D. P.; He, M.; Li, Z. M.; Gao, G.; Gao, B. et al. Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials 2011, 32, 9796-9809.

104

Luo, G. F.; Chen, W. H.; Lei, Q.; Qiu, W. X.; Liu, Y. X.; Cheng, Y. J.; Zhang, X. Z. A triple-collaborative strategy for high-performance tumor therapy by multifunctional mesoporous silica-coated gold nanorods. Adv. Funct. Mater. 2016, 26, 4339-4350.

105

Andreev, O. A.; Engelman, D. M.; Reshetnyak, Y. K. Targeting acidic diseased tissue: New technology based on use of the pH (Low) Insertion Peptide (pHLIP). Chim. Oggi 2009, 27, 34-37.

106

Xia, H. X.; Yang, X. Q.; Song, J. T.; Chen, J.; Zhang, M. Z.; Yan, D. M.; Zhang, L.; Qin, M. Y.; Bai, L. Y.; Zhao, Y. D. et al. Folic acid-conjugated silica-coated gold nanorods and quantum dots for dual-modality CT and fluorescence imaging and photothermal therapy. J. Mater. Chem. B 2014, 2, 1945-1953.

107

Lee, C.; Hwang, H. S.; Lee, S.; Kim, B.; Kim, J. O.; Oh, K. T.; Lee, E. S.; Choi, H. G.; Youn, Y. S. Rabies virus-inspired silica-coated gold nanorods as a photothermal therapeutic platform for treating brain tumors. Adv. Mater. 2017, 29, 1605563.

108

Terentyuk, G.; Panfilova, E.; Khanadeev, V.; Chumakov, D.; Genina, E.; Bashkatov, A.; Tuchin, V.; Bucharskaya, A.; Maslyakova, G.; Khlebtsov, N. et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res. 2014, 7, 325-337.

109

Monem, A. S.; Elbialy, N.; Mohamed, N. Mesoporous silica coated gold nanorods loaded doxorubicin for combined chemo-photothermal therapy. Int. J. Pharm. 2014, 470, 1-7.

110

Wani, A.; Savithra, G. H. L.; Abyad, A.; Kanvinde, S.; Li, J.; Brock, S.; Oupický, D. Surface PEGylation of mesoporous silica nanorods (MSNR): Effect on loading, release, and delivery of mitoxantrone in hypoxic cancer cells. Sci. Rep. 2017, 7, 2274.

111

Lee, J.; Jeong, C.; Kim, W. J. Facile fabrication and application of near-IR light-responsive drug release system based on gold nanorods and phase change material. J. Mater. Chem. B 2014, 2, 8338-8345.

112

Song, Z. X.; Liu, Y.; Shi, J.; Ma, T.; Zhang, Z.; Ma, H.; Cao, S. K. Hydroxyapatite/mesoporous silica coated gold nanorods with improved degradability as a multi-responsive drug delivery platform. Mater. Sci. Eng. C 2018, 83, 90-98.

113

Zhou, H. M.; Xu, H. X.; Li, X.; Lv, Y. H.; Ma, T.; Guo, S. Y.; Huang, Z. J.; Wang, X. B.; Xu, P. H. Dual targeting hyaluronic acid-RGD mesoporous silica coated gold nanorods for chemo-photothermal cancer therapy. Mater. Sci. Eng. C 2017, 81, 261-270.

114

Khanal, A.; Ullum, C.; Kimbrough, C. W.; Garbett, N. C.; Burlison, J. A.; McNally, M. W.; Chuong, P.; El-Baz, A. S.; Jasinski, J. B.; McNally, L. R. Tumor targeted mesoporous silica-coated gold nanorods facilitate detection of pancreatic tumors using multispectral optoacoustic tomography. Nano Res. 2015, 8, 3864-3877.

115

Xu, B. Y.; Ju, Y.; Cui, Y. B.; Song, G. B.; Iwase, Y.; Hosoi, A.; Morita, Y. tLyP-1-conjugated Au-nanorod@SiO2 core-shell nanoparticles for tumor-targeted drug delivery and photothermal therapy. Langmuir 2014, 30, 7789-7797.

Publication history
Copyright
Acknowledgements

Publication history

Received: 20 November 2018
Revised: 02 January 2019
Accepted: 03 January 2019
Published: 15 January 2019
Issue date: April 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by FEDER funds through the POCI—COMPETE 2020—Operational Programme Competitiveness and Internationalisation in Axis I—Strengthening research, technological development and innovation (Project POCI-01—0145-FEDER-007491) and National Funds by FCT—Foundation for Science and Technology (Project UID/Multi/00709/2013). A. F. M., S. P. M., and E. C. C. acknowledges their Ph.D. fellowships from FCT (Nos. SFRH/BD/ 109482/2015, SFRH/BD/109563/2015, and SFRH/BD/103507/2014).

Return