Journal Home > Volume 12 , Issue 3

The study focuses on the influence of Ni and Bi on alkaline ethanol oxidation reaction (EOR) activities, stabilities and structure characteristics of carbon supported Pd-based nanocatalysts (Pd/C, Pd60Ni40/C, Pd60Bi40/C, Pd60Ni20Bi20/C) by cyclic voltammetry/chronoamperometry using rotating disk electrode and various physico-chemical methods such as X-ray powder diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy coupled with energy dispersive X-ray spectroscopy and inductively coupled plasma optical emission spectrometry. Nickel generates more adsorbed OH on the Pd catalyst surface than Bi and promotes the oxidation of adsorbed ethanol species. This results in a low onset potential toward ethanol oxidation with high current density. The presence of Bi facilitates high tolerance toward various reaction intermediates resulting from the incomplete ethanol oxidation, but might also initiate the agglomeration of Pd nanoparticles. The novel Pd60Ni20Bi20/C nanocatalyst displays exceptional byproduct tolerance, but only satisfying catalytic activity toward ethanol oxidation in an alkaline medium. Therefore, the EOR performance of the novel carbon supported ternary PdxNiyBiz anode catalyst with various atomic variations (Pd70Ni25Bi5/C, Pd70Ni20Bi10/C, Pd80Ni10Bi10/C and Pd40Ni20Bi40/C) using the common instant reduction synthesis method was further optimized for the alkaline direct ethanol fuel cell. The carbon supported Pd: Ni: Bi nanocatalyst with atomic ratio of 70:20:10 displays outstanding catalytic activity for the alkaline EOR compared to the other PdxNiyBiz/C nanocatalysts as well as to the benchmarks Pd/C, Pd60Ni40/C and Pd60Bi40/C. The synergy and the optimal content in consideration of the oxide species of Pd, Ni and Bi are crucial for the EOR kinetic enhancement in alkaline medium.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Novel highly active carbon supported ternary PdNiBi nanoparticles as anode catalyst for the alkaline direct ethanol fuel cell

Show Author's information Bernd Cermenek1( )Johanna Ranninger1Birgit Feketeföldi2Ilse Letofsky-Papst3Norbert Kienzl4Brigitte Bitschnau5Viktor Hacker1
Institute of Chemical Engineering and Environmental Technology,Graz University of Technology, NAWI Graz,Inffeldgasse 25/C, 8010 Graz,Austria;
Institute for Surface Technologies and Photonics,JOANNEUM RESEARCH Forschungsgesellschaft mbH/Materials,Franz-Pichler-Straβe 30, 8160 Weiz,Austria;
Institute for Electron Microscopy and Nanoanalysis and Center for Electron Microscopy,Graz University of Technology, NAWI Graz,Steyrergasse 17, 8010 Graz,Austria;
Bioenergy 2020+ GmbH,Inffeldgasse 21/B,8010 Graz,Austria;
Institute of Physical and Theoretical Chemistry, Graz University of Technology, Streymayrgasse 9,Austria;

Abstract

The study focuses on the influence of Ni and Bi on alkaline ethanol oxidation reaction (EOR) activities, stabilities and structure characteristics of carbon supported Pd-based nanocatalysts (Pd/C, Pd60Ni40/C, Pd60Bi40/C, Pd60Ni20Bi20/C) by cyclic voltammetry/chronoamperometry using rotating disk electrode and various physico-chemical methods such as X-ray powder diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy coupled with energy dispersive X-ray spectroscopy and inductively coupled plasma optical emission spectrometry. Nickel generates more adsorbed OH on the Pd catalyst surface than Bi and promotes the oxidation of adsorbed ethanol species. This results in a low onset potential toward ethanol oxidation with high current density. The presence of Bi facilitates high tolerance toward various reaction intermediates resulting from the incomplete ethanol oxidation, but might also initiate the agglomeration of Pd nanoparticles. The novel Pd60Ni20Bi20/C nanocatalyst displays exceptional byproduct tolerance, but only satisfying catalytic activity toward ethanol oxidation in an alkaline medium. Therefore, the EOR performance of the novel carbon supported ternary PdxNiyBiz anode catalyst with various atomic variations (Pd70Ni25Bi5/C, Pd70Ni20Bi10/C, Pd80Ni10Bi10/C and Pd40Ni20Bi40/C) using the common instant reduction synthesis method was further optimized for the alkaline direct ethanol fuel cell. The carbon supported Pd: Ni: Bi nanocatalyst with atomic ratio of 70:20:10 displays outstanding catalytic activity for the alkaline EOR compared to the other PdxNiyBiz/C nanocatalysts as well as to the benchmarks Pd/C, Pd60Ni40/C and Pd60Bi40/C. The synergy and the optimal content in consideration of the oxide species of Pd, Ni and Bi are crucial for the EOR kinetic enhancement in alkaline medium.

Keywords: catalytic activity, ethanol oxidation reaction, alkaline direct ethanol fuel cell, ternary PdNiBi nanocatalysts, structure characteristics

References(56)

1

An, L.; Zhao, T. S.; Li, Y. S. Carbon-neutral sustainable energy technology: Direct ethanol fuel cells. Renew. Sustain. Energy Rev. 2015, 50, 1462-1468.

2

Zhang, Z. Y.; Xin, L.; Sun, K.; Li, W. Z. Pd-Ni electrocatalysts for efficient ethanol oxidation reaction in alkaline electrolyte. Int. J. Hydrogen Energy 2011, 36, 12686-12697.

3

Shen, S. Y.; Zhao, T. S.; Wu, Q. X. Product analysis of the ethanol oxidation reaction on palladium-based catalysts in an anion-exchange membrane fuel cell environment. Int. J. Hydrogen Energy 2012, 37, 575-582.

4

Shen, S. Y.; Zhao, T. S.; Xu, J. B.; Li, Y. S. Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J. Power Sources 2010, 195, 1001-1006.

5

Zhao, T. S.; Li, Y. S.; Shen, S. Y. Anion-exchange membrane direct ethanol fuel cells: Status and perspective. Front. Energy Power Eng. China 2010, 4, 443-458.

6

An, L.; Zhao, T. S. Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production. J. Power Sources 2017, 341, 199-211.

7

Neto, A. O.; Tusi, M. M.; de Oliveira Polanco, N. S.; da Silva, S. G.; Santos, M. C.; Spinacé, E. V. PdBi/C electrocatalysts for ethanol electro-oxidation in alkaline medium. Int. J. Hydrogen Energy 2011, 36, 10522-10526.

8

Wu, Q. M.; Jiang, L. H.; Qi, L. T.; Yuan, L. Z.; Wang, E. D.; Sun, G. Q. Electrocatalytic activity and stability of Ag-MnOx/C composites toward oxygen reduction reaction in alkaline solution. Electrochim. Acta 2014, 123, 167-175.

9

Wang, Y.; Shi, F. F.; Yang, Y. Y.; Cai, W. B. Carbon supported Pd-Ni-P nanoalloy as an efficient catalyst for ethanol electro-oxidation in alkaline media. J. Power Sources 2013, 243, 369-373.

10

Yu, E. H.; Wang, X.; Krewer, U.; Li, L.; Scott, K. Direct oxidation alkaline fuel cells: From materials to systems. Energy Environ. Sci. 2012, 5, 5668-5680.

11

Kamarudin, M. Z. F.; Kamarudin, S. K.; Masdar, M. S.; Daud, W. R. W. Review: Direct ethanol fuel cells. Int. J. Hydrogen Energy 2013, 38, 9438-9453.

12

Su, P. C.; Chen, H. S.; Chen, T. Y.; Liu, C. W.; Lee C. H.; Lee, J. F.; Chan, T. S.; Wang, K. W. Enhancement of electrochemical properties of Pd/C catalysts toward ethanol oxidation reaction in alkaline solution through Ni and Au alloying. Int. J. Hydrogen Energy 2013, 38, 4474-4482.

13

Singh, R. N.; Anindita, A. S. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT, and Ni for ethanol electro-oxidation in alkaline solutions. Carbon 2009, 47, 271-278.

14

Ma, L.; Chu, D.; Chen, R. R. Comparison of ethanol electro-oxidation on Pt/C and Pd/C catalysts in alkaline media. Int. J. Hydrogen Energy 2012, 37, 11185-11194.

15

Geraldes, A. N.; da Silva, D. F.; Pino, E. S.; da Silva, J. C. M.; de Souza, R. F. B.; Hammer, P.; Spinacé, E. V.; Neto, A. O.; Linardi, M.; dos Santos, M. C. Ethanol electro-oxidation in an alkaline medium using Pd/C, Au/C and PdAu/C electrocatalysts prepared by electron beam irradiation. Electrochim. Acta 2013, 111, 455-465.

16

Shen, P. K.; Xu, C. W. Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts. Electrochem. Commun. 2006, 8, 184-188.

17

Ma, L.; He, H.; Hsu, A.; Chen, R. R. PdRu/C catalysts for ethanol oxidation in anion-exchange membrane direct ethanol fuel cells. J. Power Sources 2013, 241, 696-702.

18

Liang, Z. X.; Zhao, T. S.; Xu, J. B.; Zhu, L. D. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim. Acta 2009, 54, 2203-2208.

19

Zhu, F. C.; Wang, M.; He, Y. W.; Ma, G. S.; Zhang, Z. H.; Wang, X. G. A comparative study of elemental additives (Ni, Co and Ag) on electrocatalytic activity improvement of PdSn-based catalysts for ethanol and formic acid electro-oxidation. Electrochim. Acta 2014, 148, 291-301.

20

Moraes, L. P. R.; Matos, B. R.; Radtke, C.; Santiago, E. I.; Fonseca, F. C.; Amico, S. C.; Malfatti, C. F. Synthesis and performance of palladium-based electrocatalysts in alkaline direct ethanol fuel cell. Int. J. Hydrogen Energy 2016, 41, 6457-6468.

21

Tusi, M. M.; Polanco, N. S. O.; da Silva, S. G.; Spinacé, E. V.; Neto, A. O. The high activity of PtBi/C electrocatalysts for ethanol electro-oxidation in alkaline medium. Electrochem. Commun. 2011, 13, 143-146.

22

Nikiforova, T. G.; Datskevich, O. A.; Maleev, V. V. Palladium catalysts on porous nickel substrates for alcohol fuel cells. Russ. J. Appl. Chem. 2012, 85, 1871-1878.

23

Yang, H. J.; Wang, H.; Li, H.; Ji, S.; Davids, M. W.; Wang, R. F. Effect of stabilizers on the synthesis of palladium-nickel nanoparticles supported on carbon for ethanol oxidation in alkaline medium. J. Power Sources 2014, 260, 12-18.

24

Modibedi, R. M.; Masombuka, T.; Mathe, M. K. Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts for ethanol electro-oxidation in alkaline medium. Int. J. Hydrogen Energy 2011, 36, 4664-4672.

25

Shen, S. Y.; Zhao, T. S.; Xu, J. B.; Li, Y. S. High performance of a carbon supported ternary PdIrNi catalyst for ethanol electro-oxidation in anionexchange membrane direct ethanol fuel cells. Energy Environ. Sci. 2011, 4, 1428-1433.

26

Dutta, A.; Datta, J. Outstanding catalyst performance of PdAuNi nanoparticles for the anodic reaction in an alkaline direct ethanol (with anion-exchange membrane) fuel cell. J. Phys. Chem. C 2012, 116, 25677-25688.

27

Jiang, R. Z.; Tran, D. T.; McClure, J. P.; Chu, D. A class of (Pd-Ni-P) electrocatalysts for the ethanol oxidation reaction in alkaline media. ACS Catal. 2014, 4, 2577-2586.

28

Yi, Q. F.; Chu, H.; Chen, Q. H.; Yang, Z.; Liu, X. P. High performance Pd, PdNi, PdSn and PdSnNi nanocatalysts supported on carbon nanotubes for electrooxidation of C2-C4 alcohols. Electroanal 2015, 27, 388-397.

29

Jongsomjit, S.; Prapainainar, P.; Sombatmankhong, K. Synthesis and characterisation of Pd-Ni-Sn electrocatalyst for use in direct ethanol fuel cells. Solid State Ioncs 2016, 288, 147-153.

30

Jana, R.; Dhiman, S.; Peter, S. C. Facile solvothermal synthesis of highly active and robust Pd1.87Cu0.11Sn electrocatalyst towards direct ethanol fuel cell applications. Mater. Res. Express 2016, 3, 084001.

31

Rostami, H.; Abdollahi, T.; Mehdipour, P.; Rostami, A. A.; Farmanzadeh, D. Effect of Ni addition on electrocatalytic activity of PdCu catalysts for ethanol electrooxidation: An experimental and theoretical study. Int. J. Hydrogen Energy 2017, 42, 24713-24725.

32

Yang, H. L.; Yu, Z. N.; Li, S. W.; Zhang, Q. L.; Jin, J.; Ma, J. T. Ultrafine palladium-gold-phosphorus ternary alloyed nanoparticles anchored on ionic liquids-noncovalently functionalized carbon nanotubes with excellent electrocatalytic property for ethanol oxidation reaction in alkaline media. J. Catal. 2017, 353, 256-264.

33

Zhang, Y. Y.; Yi, Q. F.; Deng, Z. L.; Zhou, X. L.; Nie, H. D. Excellent electroactivity of ternary Pd-Ag-Sn nanocatalysts for ethanol oxidation. Catal. Lett. 2018, 148, 1190-1201.

34

Shu, Y. L.; Shi, X. Q.; Ji, Y. Y.; Wen, Y.; Guo, X. Y.; Ying, Y.; Wu, Y. P.; Yang, H. F. Hollow echinus-like PdCuCo alloy for superior efficient catalysis of ethanol. ACS Appl. Mater. Interfaces 2018, 10, 4743-4749.

35

Huang, Y. Y.; Guo, Y. L.; Wang, Y. B.; Yao, J. N. Synthesis and performance of a novel PdCuPb/C nanocatalyst for ethanol electrooxidation in alkaline medium. Int. J. Hydrogen Energy 2014, 39, 4274-4281

36

Bambagioni, V.; Bianchini, C.; Filippi, J.; Oberhauser, W.; Marchionni, A.; Vizza, F.; Psaro, R.; Sordelli, L.; Foresti, M. L.; Innocenti, M. Ethanol oxidation on electrocatalysts obtained by spontaneous deposition of palladium onto nickel-zinc materials. ChemSusChem 2009, 2, 99-112.

37

Grimmer, C.; Grandi, M.; Zacharias, R.; Cermenek, B.; Weber, H.; Morais, C.; Napporn, T. W.; Weinberger, S.; Schenk, A.; Hacker, V. The electrooxidation of borohydride: A mechanistic study on palladium (Pd/C) applying RRDE, 11B-NMR and FTIR. Appl. Catal. B Environ. 2016, 180, 614-621.

38

Reetz, M. T.; Lopez, M. Method for in situ immobilization of water-soluble nanodispersed metal oxide colloids. U.S. Patent 7, 244, 688, July 17, 2007.

39

Piasentin, R. M.; Spinacé, E. V.; Tusi, M. M.; Oliveira Neto, A. Preparation of PdPtSn/C-Sb2O5. SnO2 electrocatalysts by borohydride reduction for ethanol electro-oxidation in alkaline medium. Int. J. Electrochem. Sci. 2011, 6, 2255-2263.

40

Grimmer, C.; Zacharias, R.; Grandi, M.; Cermenek, B.; Schenk, A.; Weinberger, S.; Mautner, F. A.; Bitschnau, B.; Hacker, V. Carbon supported ruthenium as anode catalyst for alkaline direct borohydride fuel cells. J. Phys. Chem. C 2015, 119, 23839-23844.

41

Grimmer, C.; Zacharias, R.; Grandi, M.; Pichler, B.; Kaltenboeck, I.; Gebetsroither, F.; Wagner, J.; Cermenek, B.; Weinberger, S.; Schenk, A. et al. A membrane-free and practical mixed electrolyte direct borohydride fuel cell. J. Electrochem. Soc. 2016, 163, F278-F283.

42

Grimmer, C.; Grandi, M.; Zacharias, R.; Weinberger, S.; Schenk, A.; Aksamija, E.; Mautner, F. A.; Bitschnau, B.; Hacker, V. Carbon supported nanocrystalline manganese oxide: Surpassing platinum as oxygen reduction catalyst in direct borohydride fuel cells. J. Electrochem. Soc. 2016, 163, F885-F890.

43

Cerritos, R. C.; Guerra-Balcázar, M.; Ramírez, R. F.; Ledesma-García, J.; Arriaga, L. G. Morphological effect of Pd catalyst on ethanol electro-oxidation reaction. Materials 2012, 5, 1686-1697.

44

Wang, L. Q.; Lavacchi, A.; Bevilacqua, M.; Bellini, M.; Fornasiero, P.; Filippi, J.; Innocenti, M.; Marchionni, A.; Miller, H. A.; Vizza, F. Energy efficiency of alkaline direct ethanol fuel cells employing nanostructured palladium electrocatalysts. ChemCatChem 2015, 7, 2214-2221.

45

Amin, R. S.; Abdel Hameed, R. M.; El-Khatib, K. M.; Elsayed Youssef, M. Electrocatalytic activity of nanostructured Ni and Pd-Ni on Vulcan XC-72R carbon black for methanol oxidation in alkaline medium. Int. J. Hydrogen Energy 2014, 39, 2026-2041.

46

Simões, M.; Baranton, S.; Coutanceau, C. Influence of bismuth on the structure and activity of Pt and Pd nanocatalysts for the direct electrooxidation of NaBH4. Electrochim. Acta 2010, 56, 580-591.

47

Obradović, M. D.; Stančić, Z. M.; Lačnjevac, U. Č; Radmilović, V. V.; Gavrilović-Wohlmuther, A.; Radmilović, V. R.; Gojković, S. L. Electrochemical oxidation of ethanol on palladium-nickel nanocatalyst in alkaline media. Appl. Catal. B Environ. 2016, 189, 110-118.

48

Shinozaki, K.; Zack, J. W.; Richards, R. M.; Pivovar, B. S.; Kocha, S. S. Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique. J. Electrochem. Soc. 2015, 162, F1144-F1158.

49

Pollet, B. G.; Goh, J. T. E. The importance of ultrasonic parameters in the preparation of fuel cell catalyst inks. Electrochim. Acta 2014, 128, 292-303.

50

Casella, I. G.; Contursi, M. Characterization of bismuth adatom-modified palladium electrodes: The electrocatalytic oxidation of aliphatic aldehydes in alkaline solutions. Electrochim. Acta 2006, 52, 649-657.

51

Sekol, R. C.; Carmo, M.; Kumar, G.; Gittleson, F.; Doubek, G.; Sun, K.; Schroers, J.; Taylor, A. D. Pd-Ni-Cu-P metallic glass nanowires for methanol and ethanol oxidation in alkaline media. Int. J. Hydrogen Energy 2013, 38, 11248-11255.

52

Paschos, O.; Simonov, A. N.; Bobrovskaya, A. N.; Hantel, M.; Rzepka, M.; Dotzauer, P.; Popov, A. N.; Simonov, P. A.; Parmon, V. N.; Stimming, U. Bismuth modified Pd/C as catalysts for hydrogen related reactions. Electrochem. Commun. 2010, 12, 1490-1492.

53

Hofstead-Duffy, A. M.; Chen, D. J.; Sun, S. G.; Tong, Y. J. Origin of the current peak of negative scan in the cyclic voltammetry of methanol electro-oxidation on Pt-based electrocatalysts: A revisit to the current ratio criterion. J. Mater. Chem. 2012, 22, 5205-5208.

54

Zhao, Y. Z.; Li, X. M.; Schechter, J. M.; Yang, Y. A. Revisiting the oxidation peak in the cathodic scan of the cyclic voltammogram of alcohol oxidation on noble metal electrodes. RSC Adv. 2016, 6, 5384-5390.

55

Brouzgou, A.; Podias, A.; Tsiakaras, P. PEMFCs and AEMFCs directly fed with ethanol: A current status comparative review. J. Appl. Electrochem. 2013, 43, 119-136.

56

Mondal, A.; De, A.; Datta, J. Cost effective and energy efficient catalytic support of Co and Ni in Pd matrix toward ethanol oxidation reaction: Product analysis and mechanistic interpretation. Appl. Catal. A: Gen. 2018, 561, 87-95.

File
12274_2019_2277_MOESM1_ESM.pdf (7.2 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 14 October 2018
Revised: 16 December 2018
Accepted: 21 December 2018
Published: 11 January 2019
Issue date: March 2019

Copyright

© The Author(s) 2019

Acknowledgements

Acknowledgements

Financial support from the Austrian Climate Energy Fund, Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT), The Austrian Research Promotion Agency (FFG) through the program "Energy Mission Austria" and the IEA research cooperation are gratefully acknowledged. We thank Dr. Christian Palfinger for performing of the XPS analysis.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return