Journal Home > Volume 12 , Issue 3

Graphene-h-BN hybrid nanostructures are grown in one step on the Pt(111) surface by ultra-high vacuum chemical vapor deposition using a single precursor, the dimethylamino borane complex. By varying the deposition conditions, different nanostructures ranging from a fully continuous hybrid monolayer to well-separated Janus nanodots can be obtained. The growth starts with heterogeneous nucleation on morphological defects such as Pt step edges and proceeds by the addition of small clusters formed by the decomposition of the dimethylamino borane complex. Scanning tunneling microscopy measurements indicate that a sharp zigzag in-plane boundary is formed when graphene grows aligned with the Pt substrate and consequently with the h-BN layer as well. When graphene is rotated by 30°, the graphene armchair edges are seamlessly connected to h-BN zigzag edges. This is confirmed by a thorough density functional theory (DFT) study. Angle resolved photoemission spectroscopy (ARPES) data suggests that both h-BN and graphene present the typical electronic structure of self-standing non-interacting materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Microscopic insight into the single step growth of in-plane heterostructures between graphene and hexagonal boron nitride

Show Author's information Thanh Hai Nguyen1Daniele Perilli2Mattia Cattelan1,3Hongsheng Liu2Francesco Sedona1Neil A. Fox3Cristiana Di Valentin2Stefano Agnoli1( )
Department of Chemical Science,University of Padova,Via Francesco Marzolo 1,35131,Padova, Italy;
Dipartimento di Scienza dei Materiali,Università di Milano-Bicocca,via R. Cozzi 55,20125,Milano, Italy;
School of Chemistry,University of Bristol,Cantocks Close, Bristol BS8 1TS,UK;

Abstract

Graphene-h-BN hybrid nanostructures are grown in one step on the Pt(111) surface by ultra-high vacuum chemical vapor deposition using a single precursor, the dimethylamino borane complex. By varying the deposition conditions, different nanostructures ranging from a fully continuous hybrid monolayer to well-separated Janus nanodots can be obtained. The growth starts with heterogeneous nucleation on morphological defects such as Pt step edges and proceeds by the addition of small clusters formed by the decomposition of the dimethylamino borane complex. Scanning tunneling microscopy measurements indicate that a sharp zigzag in-plane boundary is formed when graphene grows aligned with the Pt substrate and consequently with the h-BN layer as well. When graphene is rotated by 30°, the graphene armchair edges are seamlessly connected to h-BN zigzag edges. This is confirmed by a thorough density functional theory (DFT) study. Angle resolved photoemission spectroscopy (ARPES) data suggests that both h-BN and graphene present the typical electronic structure of self-standing non-interacting materials.

Keywords: graphene, scanning tunneling microscopy, density functional theory (DFT), h-BN, heterostructures

References(72)

1

Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

2

Jariwala, D.; Marks, T. J.; Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170-181.

3

Das, S.; Robinson, J. A.; Dubey, M.; Terrones, H.; Terrones, M. Beyond graphene: Progress in novel two-dimensional materials and van Der Waals solids. Annu. Rev. Mater. Res. 2015, 45, 1-27.

4

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

5

Duong, D. L.; Yun, S. J.; Lee, Y. H. van der Waals layered materials: Opportunities and challenges. ACS Nano 2017, 11, 11803-11830.

6

Lee, J. Y.; Shin, J. -H.; Lee, G. -H.; Lee, C. -H. Two-dimensional semiconductor optoelectronics based on van der Waals heterostructures. Nanomaterials 2016, 6, 193.

7

Geim, A. K.; Grigorieva, I. V. van der Waals heterostructures. Nature 2013, 499, 419-425.

8

Cattelan, M.; Markman, B.; Lucchini, G.; Das, P. K.; Vobornik, I.; Robinson, J. A.; Agnoli, S.; Granozzi, G. New strategy for the growth of complex heterostructures based on different 2D materials. Chem. Mater. 2015, 27, 4105-4113.

9

Solís-Fernández, P.; Bissett, M.; Ago, H. Synthesis, structure and applications of graphene-based 2D heterostructures. Chem. Soc. Rev. 2017, 46, 4572-4613.

10

Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135-1142.

11

Zhang, J. F.; Xie, W. Y.; Zhao, J. J.; Zhang, S. B. Band alignment of two-dimensional lateral heterostructures. 2D Mater. 2017, 4, 015038.

12

Drost, R.; Uppstu, A.; Schulz, F.; Hämäläinen, S. K.; Ervasti, M.; Harju, A.; Liljeroth, P. Electronic states at the graphene-hexagonal boron nitride zigzag interface. Nano Lett. 2014, 14, 5128-5132.

13

Sun, Q. L.; Dai, Y.; Ma, Y. D.; Wei, W.; Huang, B. B. Lateral heterojunctions within monolayer H-BN/graphene: A first-principles study. RSC Adv. 2015, 5, 33037-33043.

14

Zhang, J. F.; Xie, W. Y.; Xu, X. H.; Zhang, S. B.; Zhao, J. J. Structural and electronic properties of interfaces in graphene and hexagonal boron nitride lateral heterostructures. Chem. Mater. 2016, 28, 5022-5028.

15

Yu, Z. G.; Zhang, Y. W. Electronic properties of mutually embedded h -BN and graphene: A first principles study. Chem. Phys. Lett. 2016, 666, 33-37.

16

Krsmanović, R. S.; Šljivančanin, Ž. Atomic structure, electronic properties, and reactivity of in-plane heterostructures of graphene and hexagonal boron nitride. J. Phys. Chem. C 2014, 118, 16104-16112.

17

Nguyen, M. -T. Reactivity of graphene and hexagonal boron nitride in-plane heterostructures with oxygen: A DFT study. ChemPhysChem 2014, 15, 2372-2376.

18

Li, M. Z.; Wang, Y. O.; Tang, P.; Xie, N. H.; Zhao, Y. X.; Liu, X.; Hu, G.; Xie, J. L.; Zhao, Y. F.; Tang, J. W. et al. Graphene with atomic-level in-plane decoration of h -BN domains for efficient photocatalysis. Chem. Mater. 2017, 29, 2769-2776.

19

Chen, X. K.; Hu, J. W.; Wu, X. J.; Jia, P.; Peng, Z. H.; Chen, K. Q. Tunable thermal rectification in graphene/hexagonal boron nitride hybrid structures. J. Phys. D: Appl. Phys. 2018, 51, 085103.

20

Liu, Z.; Ma, L. L.; Shi, G.; Zhou, W.; Gong, Y. L.; Lei, S. D.; Yang, X. B.; Zhang, J. N.; Yu, J. L.; Hackenberg, K. P. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol. 2013, 8, 119-124.

21

Levendorf, M. P.; Kim, C. J.; Brown, L.; Huang, P. Y.; Havener, R. W.; Muller, D. A.; Park, J. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 2012, 488, 627-632.

22

Huang, C. M.; Wu, S. F.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. D. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 2014, 13, 1096-1101.

23

Zhang, S. Y.; Li, J. D.; Wu, H. R.; Li, X. M.; Guo, W. L. Direct synthesizing in-plane heterostructures of graphene and hexagonal boron nitride in designed pattern. Adv. Mater. Interfaces 2018, 5, 1800208.

24

Zhang, X. Q.; Lin, C. H.; Tseng, Y. W.; Huang, K. H.; Lee, Y. H. Synthesis of lateral heterostructures of semiconducting atomic layers. Nano Lett. 2015, 15, 410-415.

25

Liu, L.; Park, J.; Siegel, D. A.; McCarty, K. F.; Clark, K. W.; Deng, W.; Basile, L.; Idrobo, J. C.; Li, A. P.; Gu, G. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 2014, 343, 163-167.

26

Li, M. -Y.; Shi, Y.; Cheng, C. -C.; Lu, L. -S.; Lin, Y. -C.; Tang, H. -L.; Tsai, M. -L.; Chu, C. -W.; Wei, K. -H.; He, J. -H. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral P-N junction with an atomically sharp interface. Science 2015, 349, 524-528.

27

Nappini, S.; Píš, I.; Menteş, T. O.; Sala, A.; Cattelan, M.; Agnoli, S.; Bondino, F.; Magnano, E. Formation of a quasi-free-standing single layer of graphene and hexagonal boron nitride on Pt(111) by a single molecular precursor. Adv. Funct. Mater. 2016, 26, 1120-1126.

28

Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. Transition metal-catalyzed formation of boron−nitrogen bonds: Catalytic dehydrocoupling of amine-borane adducts to form aminoboranes and borazines. J. Am. Chem. Soc. 2003, 125, 9424-9434.

29

Bowden, M. E.; Brown, I. W. M.; Gainsford, G. J.; Wong, H. Structure and thermal decomposition of methylamine borane. Inorg. Chim. Acta 2008, 361, 2147-2153.

30

Christmann, K.; Ertl, G.; Pignet, T. Adsorption of hydrogen on a Pt(111) surface. Surf. Sci. 1976, 54, 365-392.

31

Nappini, S.; Píš, I.; Carraro, G.; Celasco, E.; Smerieri, M.; Savio, L.; Magnano, E.; Bondino, F. On-surface synthesis of different boron-nitrogen-carbon heterostructures from dimethylamine borane. Carbon 2017, 120, 185-193.

32

Herceg, E.; Trenary, M. Formation of surface CN from the coupling of C and N atoms on Pt(111). J. Am. Chem. Soc. 2003, 125, 15758-15759.

33

Gao, M.; Pan, Y.; Huang, L.; Hu, H.; Zhang, L. Z.; Guo, H. M.; Du, S. X.; Gao, H. J. Epitaxial growth and structural property of graphene on Pt(111). Appl. Phys. Lett. 2011, 98, 033101.

34

Feng, X. F.; Wu, J.; Bell, A. T.; Salmeron, M. An atomic-scale view of the nucleation and growth of graphene islands on Pt surfaces. J. Phys. Chem. C 2015, 119, 7124-7129.

35

Bauer, M.; Bernard, D. 2D growth processes: SLE and Loewner chains. Phys. Rep. 2006, 432, 115-221.

36

Loginova, E.; Bartelt, N. C.; Feibelman, P. J.; McCarty, K. F. Evidence for graphene growth by C cluster attachment. New J. Phys. 2008, 10, 093026.

37

Kim, H. W.; Ko, W.; Ku, J.; Kim, Y.; Park, S.; Hwang, S. Evolution of graphene growth on Pt(111): From carbon clusters to nanoislands. J. Phys. Chem. C 2017, 121, 25074-25078.

38

Lacovig, P.; Pozzo, M.; Alfè, D.; Vilmercati, P.; Baraldi, A.; Lizzit, S. Growth of dome-shaped carbon nanoislands on Ir(111): The intermediate between carbidic clusters and quasi-free-standing graphene. Phys. Rev. Lett . 2009, 103, 166101.

39

Yuan, Q. H.; Gao, J. F.; Shu, H. B.; Zhao, J. J.; Chen, X. S.; Ding, F. Magic carbon clusters in the chemical vapor deposition growth of graphene. J. Am. Chem. Soc. 2012, 134, 2970-2975.

40

Gao, J. F.; Ding, F. The structure and stability of magic carbon clusters observed in graphene chemical vapor deposition growth on Ru(0001) and Rh(111) surfaces. Angew. Chem., Int. Ed. 2014, 53, 14031-14035.

41

Lambin, P.; Amara, H.; Ducastelle, F.; Henrard, L. Long-range interactions between substitutional nitrogen dopants in graphene: Electronic properties calculations. Phys. Rev. B 2012, 86, 045448.

42

Zhao, L. Y.; He, R.; Rim, K. T.; Schiros, T.; Kim, K. S.; Zhou, H.; Gutiérrez, C.; Chockalingam, S. P.; Arguello, C. J.; Pálová, L. et al. Visualizing individual nitrogen dopants in monolayer graphene. Science 2011, 333, 999-1003.

43

Ćavar, E.; Westerström, R.; Mikkelsen, A.; Lundgren, E.; Vinogradov, A. S.; Ng, M. L.; Preobrajenski, A. B.; Zakharov, A. A.; Mårtensson, N. A single H-BN layer on Pt(111). Surf. Sci. 2008, 602, 1722-1726.

44

Kim, H.; Mattevi, C.; Calvo, M. R.; Oberg, J. C.; Artiglia, L.; Agnoli, S.; Hirjibehedin, C. F.; Chhowalla, M.; Saiz, E. Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 2012, 6, 3614-3623.

45

Gao, J. F.; Yip, J.; Zhao, J. J.; Yakobson, B. I.; Ding, F. Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 2011, 133, 5009-5015.

46

Gao, J. F.; Yuan, Q. H.; Hu, H.; Zhao, J. J.; Ding, F. Formation of carbon clusters in the initial stage of chemical vapor deposition graphene growth on Ni(111) surface. J. Phys. Chem. C 2011, 115, 17695-17703.

47

Lu, J.; Zhang, K.; Liu, X. F.; Zhang, H.; Sum, T. C.; Neto, A. H. C.; Loh, K. P. Order-disorder transition in a two-dimensional boron-carbon-nitride alloy. Nat. Commun. 2013, 4, 2681.

48

Zhu, J.; Bhandary, S.; Sanyal, B.; Ottosson, H. Interpolation of atomically thin hexagonal boron nitride and graphene: Electronic structure and thermodynamic stability in terms of all-carbon conjugated paths and aromatic hexagons. J. Phys. Chem. C 2011, 115, 10264-10271.

49

Cattelan, M.; Peng, G. W.; Cavaliere, E.; Artiglia, L.; Barinov, A.; Roling, L. T.; Favaro, M.; Píš, I.; Nappini, S.; Magnano, E. et al. The nature of the Fe-graphene interface at the nanometer level. Nanoscale 2015, 7, 2450-2460.

50

Achilli, S.; Cavaliere, E.; Nguyen, T. H.; Cattelan, M.; Agnoli, S. Growth and electronic structure of 2D hexagonal nanosheets on a corrugated rectangular substrate. Nanotechnology 2018, 29, 485201.

51

Liu, M. X.; Li, Y. C.; Chen, P. C.; Sun, J. Y.; Ma, D. L.; Li, Q. C.; Gao, T.; Gao, Y. B.; Cheng, Z. H.; Qiu, X. H. et al. Quasi-freestanding monolayer heterostructure of graphene and hexagonal boron nitride on Ir(111) with a zigzag boundary. Nano Lett. 2014, 14, 6342-6347.

52

Hwang, B.; Hwang, J.; Yoon, J. K.; Lim, S.; Kim, S.; Lee, M.; Kwon, J. H.; Baek, H.; Sung, D.; Kim, G. et al. Energy bandgap and edge states in an epitaxially grown graphene/h-BN heterostructure. Sci. Rep. 2016, 6, 31160.

53

Gao, Y. B.; Zhang, Y. F.; Chen, P. C.; Li, Y. C.; Liu, M. X.; Gao, T.; Ma, D. L.; Chen, Y. B.; Cheng, Z. H.; Qiu, X. H. et al. Toward single-layer uniform hexagonal boron nitride-graphene patchworks with zigzag linking edges. Nano Lett. 2013, 13, 3439-3443.

54

Li, Q. C.; Zou, X. L.; Liu, M. X.; Sun, J. Y.; Gao, Y. B.; Qi, Y.; Zhou, X. B.; Yakobson, B. I.; Zhang, Y. F.; Liu, Z. F. Grain boundary structures and electronic properties of hexagonal boron nitride on Cu(111). Nano Lett. 2015, 15, 5804-5810.

55

Henck, H.; Pierucci, D.; Fugallo, G.; Avila, J.; Cassabois, G.; Dappe, Y. J.; Silly, M. G.; Chen, C. Y.; Gil, B.; Gatti, M. et al. Direct observation of the band structure in bulk hexagonal boron nitride. Phys. Rev. B 2017, 95, 085410.

56

Usachov, D.; Adamchuk, V. K.; Haberer, D.; Grüneis, A.; Sachdev, H.; Preobrajenski, A. B.; Laubschat, C.; Vyalikh, D. V. Quasifreestanding single-layer hexagonal boron nitride as a substrate for graphene synthesis. Phys. Rev. B 2010, 82, 075415.

57

Hwang, J.; Hwang, H.; Kim, M. -J.; Ryu, H.; Lee, J. -E.; Zhou, Q.; Mo, S. -K.; Lee, J.; Lanzara, A.; Hwang, C. Hole doping, hybridization gaps, and electronic correlation in graphene on a platinum substrate. Nanoscale 2017, 9, 11498-11503.

58

Klimovskikh, I. I.; Tsirkin, S. S.; Rybkin, A. G.; Rybkina, A. A.; Filianina, M. V.; Zhizhin, E. V.; Chulkov, E. V.; Shikin, A. M. Nontrivial spin structure of graphene on Pt(111) at the fermi level due to spin-dependent hybridization. Phys. Rev. B. 2014, 90, 235431.

59

Klimovskikh, I. I.; Otrokov, M. M.; Voroshnin, V. Y.; Sostina, D.; Petaccia, L.; Di Santo, G.; Thakur, S.; Chulkov, E. V.; Shikin, A. M. Spin-orbit coupling induced gap in graphene on Pt(111) with intercalated Pb monolayer. ACS Nano 2017, 11, 368-374.

60

Han, N. N.; Liu, H. S.; Zhang, J. F.; Gao, J. F.; Zhao, J. J. Atomistic understanding of the lateral growth of graphene from the edge of an h-BN domain: Towards a sharp in-plane junction. Nanoscale 2017, 9, 3585-3592.

61

Cattelan, M.; Agnoli, S.; Favaro, M.; Garoli, D.; Romanato, F.; Meneghetti, M.; Barinov, A.; Dudin, P.; Granozzi, G. Microscopic View on a chemical vapor deposition route to boron-doped graphene nanostructures. Chem. Mater. 2013, 25, 1490-1495.

62

De Souza, F. A. L.; Amorim, R. G.; Scopel, W. L.; Scheicher, R. H. Nano-structured interface of graphene and h-BN for sensing applications. Nanotechnology 2016, 27, 365503.

63

Petrushenko, I. K.; Petrushenko, K. B. Hydrogen adsorption on graphene, hexagonal boron nitride, and graphene-like boron nitride-carbon hetero-structures: A comparative theoretical study. Int. J. Hydrogen Energy 2018, 43, 801-808.

64

Song, X. J.; Sun, J. Y.; Qi, Y.; Gao, T.; Zhang, Y. F.; Liu, Z. F. Graphene/h -BN heterostructures: Recent advances in controllable preparation and functional applications. Adv. Energy Mater. 2016, 6, 1600541.

65

Bhowmick, S.; Singh, A. K.; Yakobson, B. I. Quantum dots and nanoroads of graphene embedded in hexagonal boron nitride. J. Phys. Chem. C 2011, 115, 9889-9893.

66

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. : Condens. Matter 2009, 21, 395502.

67

Hamada, I.; Otani, M. Comparative van der Waals density-functional study of graphene on metal surfaces. Phys. Rev. B 2010, 82, 153412.

68

Tersoff, J.; Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 1985, 31, 805-813.

69

Lee, C.; Yang, W. T.; Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785-789.

70

Becke, A. D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chern. Phys. 1993, 98, 5648-5652.

71

Dovesi, R.; Orlando, R.; Erba, A.; Zicovich-Wilson, C. M.; Civalleri, B.; Casassa, S.; Maschio, L.; Ferrabone, M.; De La Pierre, M.; D'Arco, P. et al. CRYSTAL14: A program for the ab initio investigation of crystalline solids. Int. J. Quantum Chem. 2014, 114, 1287-1317.

72

Dovesi, R.; Saunders, V. R.; Roetti, C.; Orlando, R.; Zicovich-Wilson, C. M.; Pascale, F.; Civalleri, B.; Doll, K.; Harrison, N. M.; Bush, I. J. et al. CRYSTAL14 user's manual; University of Torino: Torino, Italy, 2014.

File
12274_2019_2276_MOESM1_ESM.pdf (3.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 November 2018
Revised: 19 December 2018
Accepted: 20 December 2018
Published: 09 January 2019
Issue date: March 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was partially supported by the Italian MIUR through the national grant Futuro in Ricerca 2012 RBFR128BEC "Beyond graphene: tailored C-layers for novel catalytic materials and green chemistry". Authors acknowledge access to the Bristol NanoESCA Facility (EPSRC Strategic Equipment Grant EP/K035746/1 and EP/M000605/1).

Return