Journal Home > Volume 12 , Issue 4

The Pt-Ni nanoframe catalysts have attracted great interest owing to their unique electronic structure and excellent catalytic performance. However, the stability of the tenuous edges of nanoframe-structures is dissatisfactory and their universal applications in catalytic market beyond electrocatalytic reactions are yet to be tapped and explored. Herein, we developed a new core@shell structured Pt-Ni nanoframe@CeO2 (Pt-Ni NF@CeO2) composite via etching the Ni from inhomogeneous Pt-Ni rhombic dodecahedra (Pt-Ni RD) by cerium(III) acetate hydrate (Ce(OAc)3). In this path, Pt-Ni RD was used as self-sacrificial template, while the Ce(OAc)3 serves as the provider of the Ce3+ source and OH for the formation of CeO2 shell, etchant of Pt-Ni RD, and the surface modification agent. By this way, the etching of Pt-Ni RD and the formation of the CeO2 shell are simultaneously proceeded to form the final Pt-Ni NF@CeO2 in one step. The obtained Pt-Ni NF@CeO2 exhibits strong interfacial charge transfer interaction between Pt-Ni NF core and CeO2 shell even without reduction treatment, leading to enhanced catalytic activity in the hydrogenation of phenylacetylene. After introduction of trace silver, the Pt-Ni-Ag4.9 NF@CeO2 achieves remarkable catalytic performance for the selective conversion of phenylacetylene to styrene: high conversion (100%), styrene selectivity (86.5%), and good stability. It reveals that encapsulation noble metal nanoframes into metal oxide to form core@shell structured hybrids will indeed enhance their stability and catalytic properties. Particularly, this work expends the application of noble metal nanoframes materials to hydrogenation reactions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Construction of trace silver modified core@shell structured Pt-Ni nanoframe@CeO2 for semihydrogenation of phenylacetylene

Show Author's information Yan Long1,2Jian Li1,3Lanlan Wu1( )Qishun Wang1,3Yu Liu1,2Xiao Wang1Shuyan Song1( )Hongjie Zhang1
State Key Laboratory of Rare Earth Resource Utilization,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences,Changchun,130022,China;
University of Chinese Academy of Sciences,Beijing,100049,China;
University of Science and Technology of China,Hefei,230026,China;

Abstract

The Pt-Ni nanoframe catalysts have attracted great interest owing to their unique electronic structure and excellent catalytic performance. However, the stability of the tenuous edges of nanoframe-structures is dissatisfactory and their universal applications in catalytic market beyond electrocatalytic reactions are yet to be tapped and explored. Herein, we developed a new core@shell structured Pt-Ni nanoframe@CeO2 (Pt-Ni NF@CeO2) composite via etching the Ni from inhomogeneous Pt-Ni rhombic dodecahedra (Pt-Ni RD) by cerium(III) acetate hydrate (Ce(OAc)3). In this path, Pt-Ni RD was used as self-sacrificial template, while the Ce(OAc)3 serves as the provider of the Ce3+ source and OH for the formation of CeO2 shell, etchant of Pt-Ni RD, and the surface modification agent. By this way, the etching of Pt-Ni RD and the formation of the CeO2 shell are simultaneously proceeded to form the final Pt-Ni NF@CeO2 in one step. The obtained Pt-Ni NF@CeO2 exhibits strong interfacial charge transfer interaction between Pt-Ni NF core and CeO2 shell even without reduction treatment, leading to enhanced catalytic activity in the hydrogenation of phenylacetylene. After introduction of trace silver, the Pt-Ni-Ag4.9 NF@CeO2 achieves remarkable catalytic performance for the selective conversion of phenylacetylene to styrene: high conversion (100%), styrene selectivity (86.5%), and good stability. It reveals that encapsulation noble metal nanoframes into metal oxide to form core@shell structured hybrids will indeed enhance their stability and catalytic properties. Particularly, this work expends the application of noble metal nanoframes materials to hydrogenation reactions.

Keywords: CeO2, Pt-Ni nanoframes, core@shell sturcuture, silver modification, hydrogenation of phenylacetylene

References(48)

1

Wang, C. Y.; Zhang, L. H.; Yang, H. Z.; Pan, J. F.; Liu, J. Y.; Dotse, C.; Luan, Y. L.; Gao, R.; Lin, C. K.; Zhang, J. et al. High-indexed Pt3Ni alloy tetrahexahedral nanoframes evolved through preferential CO etching. Nano Lett. 2017, 17, 2204–2210.

2

Becknell, N.; Son, Y.; Kim, D.; Li, D. G.; Yu, Y.; Niu, Z. Q.; Lei, T.; Sneed, B. T.; More, K. L.; Markovic, N. M. et al. Control of architecture in rhombic dodecahedral Pt-Ni nanoframe electrocatalysts. J. Am. Chem. Soc. 2017, 139, 11678–11681.

3

Lin, R.; Cai, X.; Zeng, H.; Yu, Z. P. Stability of high-performance Pt-based catalysts for oxygen reduction reactions. Adv. Mater. 2018, 30, 1705332.

4

Luo, S.P.; Shen, P. K. Concave platinum-copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis. ACS Nano 2017, 11, 11946–11953.

5

Kwon, T.; Hwang, H.; Sa, Y. J.; Park, J.; Baik, H.; Joo, S. H.; Lee, K. Cobalt assisted synthesis of IrCu hollow octahedral nanocages as highly active electrocatalysts toward oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1604688.

6

Kwon, H.; Kabiraz, M. K.; Park, J.; Oh, A.; Baik, H.; Choi, S. I.; Lee, K. Dendrite-embedded platinum-nickel multiframes as highly active and durable electrocatalyst toward the oxygen reduction reaction. Nano Lett. 2018, 18, 2930–2936.

7

Kwon, T.; Jun, M.; Kim, H. Y.; Oh, A.; Park, J.; Baik, H.; Joo, S. H.; Lee, K. Vertex-reinforced PtCuCo ternary nanoframes as efficient and stable electrocatalysts for the oxygen reduction reaction and the methanol oxidation reaction. Adv. Funct. Mater. 2018, 28, 1706440.

8

Oh, A.; Sa, Y. J.; Hwang, H.; Baik, H.; Kim, J.; Kim, B.; Joo, S. H.; Lee, K. Rational design of Pt-Ni-Co ternary alloy nanoframe crystals as highly efficient catalysts toward the alkaline hydrogen evolution reaction. Nanoscale 2016, 8, 16379–16386.

9

Wu, Y.; Wang, D. S.; Zhou, G.; Yu, R.; Chen, C.; Li, Y. D. Sophisticated construction of Au islands on Pt-Ni: An ideal trimetallic nanoframe catalyst. J. Am. Chem. Soc. 2014, 136, 11594–11597.

10

Park, J.; Kabiraz, M. K.; Kwon, H.; Park, S.; Baik, H.; Choi, S. I.; Lee, K. Radially phase segregated PtCu@PtCuNi dendrite@frame nanocatalyst for the oxygen reduction reaction. Acs Nano 2017, 11, 10844–10851.

11

Li, G. D.; Tang, Z. Y. Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: Recent progress and perspective. Nanoscale 2014, 6, 3995–4011.

12

Ray, C.; Pal, T. Recent advances of metal-metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J. Mater. Chem. A 2017, 5, 9465–9487.

13

Zhang, B.; Guo, X. W.; Liang, H. J.; Ge, H. B.; Gu, X. M.; Chen, S.; Yang, H. M.; Qin, Y. Tailoring Pt-Fe2O3 interfaces for selective reductive coupling reaction to synthesize imine. ACS Catal. 2016, 6, 6560–6566.

14

Liang, H. J.; Zhang, B.; Ge, H. B.; Gu, X. M.; Zhang, S. F.; Qin, Y. Porous TiO2/Pt/TiO2 sandwich catalyst for highly selective semihydrogenation of alkyne to olefin. ACS Catal. 2017, 7, 6567–6572.

15

Long, Y.; Song, S. Y.; Li, J.; Wu, L. L.; Wang, Q. S.; Liu, Y.; Jin, R. C.; Zhang, H. J. Pt/CeO2@MOF core@shell nanoreactor for selective hydrogenation of furfural via the channel screening effect. ACS Catal. 2018, 8, 8506–8512.

16

Ta, N.; Liu, J.; Chenna, S.; Crozier, P. A.; Li, Y.; Chen, A. L.; Shen, W. J. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring. J. Am. Chem. Soc. 2012, 134, 20585–20588.

17

Mitsudome, T.; Mikami, Y.; Matoba, M.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Design of a silver-cerium dioxide core-shell nanocomposite catalyst for chemoselective reduction reactions. Angew. Chem. , Int. Ed. 2012, 51, 136–139.

18

Wang, X.; Liu, D. P.; Song, S. Y.; Zhang, H. J. Pt@CeO2 multicore@shell self-assembled nanospheres: Clean synthesis, structure optimization, and catalytic applications. J. Am. Chem. Soc. 2013, 135, 15864–15872.

19

Wang, X.; Zhang, Y. B.; Song, S. Y.; Yang, X. G.; Wang, Z.; Jin, R. C.; Zhang, H. J. L-arginine-triggered self-assembly of CeO2 nanosheaths on palladium nanoparticles in water. Angew. Chem. , Int. Ed. 2016, 55, 4542– 4546.

20

Li, J.; Song, S. Y.; Long, Y.; Wu, L. L.; Wang, X.; Xing, Y.; Jin, R. C.; Liu, X. G.; Zhang, H. J. Investigating the hybrid-structure-effect of CeO2- encapsulated Au nanostructures on the transfer coupling of nitrobenzene. Adv. Mater. 2018, 30, 1704416.

21

Song, S. Y.; Li, K.; Pan, J.; Wang, F.; Li, J. Q.; Feng, J.; Yao, S.; Ge, X.; Wang, X.; Zhang, H. J. Achieving the trade-off between selectivity and activity in semihydrogenation of alkynes by fabrication of (asymmetrical Pd@Ag core)@(CeO2 shell) nanocatalysts via autoredox reaction. Adv. Mater. 2017, 29, 1605332.

22

Song, S. Y.; Liu, X. C.; Li, J. Q.; Pan, J.; Wang, F.; Xing, Y.; Wang, X.; Liu, X. G.; Zhang, H. J. Confining the nucleation of Pt to in situ form (Pt- enriched cage)@CeO2 core@shell nanostructure as excellent catalysts for hydrogenation reactions. Adv. Mater. 2017, 29, 1700495.

23

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

24

Mathurin, L. E.; Tao, J.; Xin, H. L.; Li, J.; Zhu, Y. M.; Chen, J. Y. Dendritic core-frame and frame multimetallic rhombic dodecahedra: A comparison study of composition and structure effects on electrocatalysis of methanol oxidation. ChemNanoMat 2018, 4, 76–87.

25

Yang, C. W.; Yu, X. J.; Heißler, S.; Weidler, P. G.; Nefedov, A.; Wang, Y. M.; Wöell, C.; Kropp, T.; Paier, J.; Sauer, J. O2 activation on ceria catalysts—The importance of substrate crystallographic orientation. Angew. Chem. , Int. Ed. 2017, 56, 16399–16404.

26

Yang, C. W.; Yu, X. J.; Heißler, S.; Nefedov, A.; Colussi, S.; Llorca, J.; Trovarelli, A.; Wang, Y. M.; Wöell, C. Surface faceting and reconstruction of ceria nanoparticles. Angew. Chem. , Int. Ed. 2017, 56, 375–379.

27

Lee, K.; Kang, S. W.; Lee, S. U.; Park, K. H.; Lee, Y. W.; Han, S. W. One-pot synthesis of monodisperse 5 nm Pd-Ni nanoalloys for electrocatalytic ethanol oxidation. ACS Appl. Mater. Interfaces 2012, 4, 4208–4214.

28

Niu, Z. Q.; Li, Y. D. Removal and utilization of capping agents in nanocatalysis. Chem. Mater. 2014, 26, 72–83.

29

Albani, D.; Capdevila-Cortada, M.; Vilé, G.; Mitchell, S.; Martin, O.; López, N.; Pérez-Ramírez, J. Semihydrogenation of acetylene on indium oxide: Proposed single-ensemble catalysis. Angew. Chem. , Int. Ed. 2017, 56, 10755–10760.

30

Albani, D.; Shahrokhi, M.; Chen, Z. P.; Mitchell, S.; Hauert, R.; López, N.; Pérez-Ramírez, J. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nat. Commun. 2018, 9, 2634.

31

Crespo-Quesada, M.; Cárdenas-Lizana, F.; Dessimoz, A. L.; Kiwi-Minsker, L. Modern trends in catalyst and process design for alkyne hydrogenations. ACS Catal. 2012, 2, 1773–1786.

32

Chen, G. X.; Zhao, Y.; Fu, G.; Duchesne, P. N.; Gu, L.; Zheng, Y. P.; Weng, X. F.; Chen, M. S.; Zhang, P.; Pao, C. W. et al. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation. Science 2014, 344, 495–499.

33

Wang, Z. Q.; Yang, L.; Zhang, R.; Li, L.; Cheng, Z. M.; Zhou, Z. M. Selective hydrogenation of phenylacetylene over bimetallic Pd-Cu/Al2O3 and Pd-Zn/Al2O3 catalysts. Catal. Today 2016, 264, 37–43.

34

Shao, L. D.; Huang, X.; Teschner, D.; Zhang, W. Gold supported on graphene oxide: An active and selective catalyst for phenylacetylene hydrogenations at low temperatures. ACS Catal. 2014, 4, 2369–2373.

35

Erokhin, A. V.; Lokteva, E. S.; Yermakov, A. Y.; Boukhvalov, D. W.; Maslakov, K. I.; Golubina, E. V.; Uimin, M. A. Phenylacetylene hydrogenation on Fe@C and Ni@C core-shell nanoparticles: About intrinsic activity of graphene-like carbon layer in H2 activation. Carbon 2014, 74, 291–301.

36

Yu, J. W.; Wang, X. Y.; Yuan, C. Y.; Li, W. Z.; Wang, Y. H.; Zhang, Y. W. Synthesis of ultrathin Ni nanosheets for semihydrogenation of phenylacetylene to styrene under mild conditions. Nanoscale 2018, 10, 6936–6944.

37

Semba, K.; Fujihara, T.; Xu, T. H.; Terao, J.; Tsuji, Y. Copper-catalyzed highly selective semihydrogenation of non-polar carbon-carbon multiple bonds using a Silane and an alcohol. Adv. Synth. Catal. 2012, 354, 1542– 1550.

38

Li, C.; Shao, Z. F.; Pang, M.; Williams, C. T.; Zhang, X. F.; Liang, C. H. Carbon nanotubes supported mono- and bimetallic Pt and Ru catalysts for selective hydrogenation of phenylacetylene. Ind. Eng. Chem. Res. 2012, 51, 4934–4941.

39

Li, C.; Shao, Z. F.; Pang, M.; Williams, C. T.; Liang, C. H. Carbon nanotubes supported Pt catalysts for phenylacetylene hydrogenation: Effects of oxygen containing surface groups on Pt dispersion and catalytic performance. Catal. Today 2012, 186, 69–75.

40

Xue, Y. J.; Yao, R. H.; Li, J. R.; Wang, G. M.; Wu, P.; Li, X. H. Efficient Pt- FeOx/TiO2@SBA-15 catalysts for selective hydrogenation of cinnamaldehyde to cinnamyl alcohol. Catal. Sci. Technol. 2017, 7, 6112–6123.

41

Xie, Z. H.; Yan, B. H.; Kattel, S.; Lee, J. H.; Yao, S. Y.; Wu, Q. Y.; Rui, N.; Gomez, E.; Liu, Z. Y.; Xu, W. Q. et al. Dry reforming of methane over CeO2-supported Pt-Co catalysts with enhanced activity. Appl. Catal. B Environ 2018, 236, 280–293.

42

Sun, J.; Sun, W.; Du, L.; Du, C.; Gao, Y.; Yin, G. Tailored NbO2 modified Pt/graphene as highly stable electrocatalyst towards oxygen reduction reaction. Fuel Cells 2018, 18, 360–368.

43

Kiadehi, A. D.; Taghizadeh, M. Evaluation of a micro-channel reactor for steam reforming of ethylene glycol: A comparative study of catalytic activity of Pt or/and Ni supported γ-alumina catalysts. Int. J. Hydrogen Energy 2018, 43, 4826–4838.

44

Singha, R. K.; Shukla, A.; Yadav, A.; Sasaki, T.; Sandupatla, A.; Deo, G.; Bal, R. Pt-CeO2 nanoporous spheres-an excellent catalyst for partial oxidation of methane: Effect of the bimodal pore structure. Catal. Sci. Technol. 2017, 7, 4720–4735.

45

Lee, J.; Ryou, Y. S.; Chan, X. J.; Kim, T. J.; Kim, D. H. How Pt interacts with CeO2 under the reducing and oxidizing environments at elevated temperature: The origin of improved thermal stability of Pt/CeO2 compared to CeO2. J. Phys. Chem. C 2016, 120, 25870–25879.

46

Zhang, B.; Asakura, H.; Zhang, J.; Zhang, J. G.; De, S.; Yan, N. Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew. Chem. , Int. Ed. 2016, 55, 8319–8323.

47

Vilé, G.; Pérez-Ramírez, J. Beyond the use of modifiers in selective alkyne hydrogenation: Silver and gold nanocatalysts in flow mode for sustainable alkene production. Nanoscale 2014, 6, 13476–13482.

48

Mitsudome, T.; Urayama, T.; Yamazaki, K.; Maehara, Y.; Yamasaki, J.; Gohara, K.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Design of core-Pd/shell-Ag nanocomposite catalyst for selective semihydrogenation of alkynes. ACS Catal. 2016, 6, 666–670.

File
12274_2018_2315_MOESM1_ESM.pdf (4.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 November 2018
Revised: 14 January 2019
Accepted: 27 January 2019
Published: 06 March 2019
Issue date: April 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

The authors are grateful for the financial aid from the National Natural Science Foundation of China (Nos. 21590794, 21771173, and 21521092), the project development plan of science and technology of Jilin Province (Nos. 20180101179JC and 20160520126JH), and CAS-CSIRO project (GJHZ1730).

Return