Journal Home > Volume 12 , Issue 3

Carbon coating has been a routine strategy for improving the performance of Si-based anode materials for lithium-ion batteries. The ability to tailor the thickness, homogeneity and graphitization degree of carbon-coating layers is essential for addressing issues that hamper the real applications of Si anodes. Herein, we report the construction of two-dimensional (2D) assemblies of interconnected Si@graphitic carbon yolk-shell nanoparticles (2D-Si@gC) from commercial Si powders by exploiting oleic acid (OA). The OA molecules act as both the surface-coating ligands for facilitating 2D nanoparticle assembly and the precursor for forming uniform and conformal graphitic shells as thin as 4 nm. The as-prepared 2D-Si@gC with rationally designed void space exhibits excellent rate capability and cycling stability when used as anode materials for lithium-ion batteries, delivering a capacity of 1, 150 mAh·g-1 at an ultrahigh current density of 10 A·g-1 and maintaining a stabilized capacity of 1, 275 mAh·g-1 after 200 cycles at 4 A·g-1. The formation of yolk-shell nanoparticles confines the deposition of solid electrolyte interphase (SEI) onto the outer carbon shell, while simultaneously providing sufficient space for volumetric expansion of Si nanoparticles. These attributes effectively mitigate the thickness variations of the entire electrode during repeated lithiation and delithiation, which combined with the unique 2D architecture and interconnected graphitic carbon shells of 2D-Si@gC contributes to its superior rate capability and cycling performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Exploiting oleic acid to prepare two-dimensional assembly of Si@graphitic carbon yolk-shell nanoparticles for lithium-ion battery anodes

Show Author's information Xiao Chen1,2Chen Chen1,2Yu Zhang1,2Xianfeng Zhang1,2Dong Yang1( )Angang Dong2( )
State Key Laboratory of Molecular Engineering of Polymer and Department of Macromolecular Science,Fudan University,Shanghai,200433,China;
iChem,Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Department of Chemistry, Fudan University,Shanghai,200433,China;

Abstract

Carbon coating has been a routine strategy for improving the performance of Si-based anode materials for lithium-ion batteries. The ability to tailor the thickness, homogeneity and graphitization degree of carbon-coating layers is essential for addressing issues that hamper the real applications of Si anodes. Herein, we report the construction of two-dimensional (2D) assemblies of interconnected Si@graphitic carbon yolk-shell nanoparticles (2D-Si@gC) from commercial Si powders by exploiting oleic acid (OA). The OA molecules act as both the surface-coating ligands for facilitating 2D nanoparticle assembly and the precursor for forming uniform and conformal graphitic shells as thin as 4 nm. The as-prepared 2D-Si@gC with rationally designed void space exhibits excellent rate capability and cycling stability when used as anode materials for lithium-ion batteries, delivering a capacity of 1, 150 mAh·g-1 at an ultrahigh current density of 10 A·g-1 and maintaining a stabilized capacity of 1, 275 mAh·g-1 after 200 cycles at 4 A·g-1. The formation of yolk-shell nanoparticles confines the deposition of solid electrolyte interphase (SEI) onto the outer carbon shell, while simultaneously providing sufficient space for volumetric expansion of Si nanoparticles. These attributes effectively mitigate the thickness variations of the entire electrode during repeated lithiation and delithiation, which combined with the unique 2D architecture and interconnected graphitic carbon shells of 2D-Si@gC contributes to its superior rate capability and cycling performance.

Keywords: self-assembly, oleic acid, graphitic carbon, yolk-shell nanoparticles, Si anodes

References(32)

1

Maier, J. Nanoionics: Ion transport and electrochemical storage in confined systems. Nat. Mater. 2005, 4, 805-818.

2

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.

3

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.

4

Bie, Y. T.; Yu, J. L.; Yang, J.; Lu, W.; Nuli, Y.; Wang, J. L. Porous microspherical silicon composite anode material for lithium ion battery. Electrochim. Acta 2015, 178, 65-73.

5

Bourderau, S.; Brousse, T.; Schleich, D. M. Amorphous silicon as a possible anode material for Li-ion batteries. J. Power Sources 1999, 81, 233-236.

6

Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 2012, 6, 1522-1531.

7

Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414-429.

8

Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 2014, 4, 1300882.

9

Ryu, J.; Hong, D.; Lee. H. W.; Park. S. Practical considerations of Si-based anodes for lithium-ion battery applications. Nano Res. 2017, 10, 3970-4002.

10

Casimir, A.; Zhang, H. G.; Ogoke, O.; Amine, J. C.; Lu, J.; Wu, G. Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation. Nano Energy 2016, 27, 359-376.

11

Lu, Z. D.; Liu, N.; Lee, H. W.; Zhao, J.; Li, W. Y.; Li, Y. Z.; Cui, Y. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano 2015, 9, 2540-2547.

12

Zhang, C. F.; Kang, T. H.; Yu, J. S. Three-dimensional spongy nanographene-functionalized silicon anodes for lithium ion batteries with superior cycling stability. Nano Res. 2018, 11, 233-245.

13

Kim, W. S.; Choi, J.; Hong, S. H. Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery. Nano Res. 2016, 9, 2174-2181.

14

Liu, X. H.; Zhang, J.; Si, W. P.; Xi, L. X.; Eichler, B.; Yan, C. L.; Schmidt, O. G. Sandwich nanoarchitecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life. ACS Nano 2015, 9, 1198-1205.

15

Zhang, Y. G.; Du, N.; Zhu, S. J.; Chen, Y. F.; Lin, Y. F.; Wu, S. L.; Yang, D. R. Porous silicon in carbon cages as high-performance lithium-ion battery anode materials. Electrochim. Acta 2017, 252, 438-445.

16

Xie, J.; Tong, L.; Su, L. W.; Xu, Y. W.; Wang, L. B.; Wang, Y. H. Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance. J. Power Sources 2017, 342, 529-536.

17

Liu, Y. J.; Tai, Z. X.; Zhou, T. F.; Sencadas, V.; Zhang, J.; Zhang, L.; Konstantinov, K.; Guo, Z. P.; Liu, H. K. An all-integrated anode via interlinked chemical bonding between double-shelled-yolk-structured silicon and binder for lithium-ion batteries. Adv. Mater. 2017, 29, 1703028.

18

Yang, L. Y.; Li, H. Z.; Liu, J. Sun, Z. Q.; Tang, S.; Lei, M. Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries. Sci. Rep. 2015, 5, 10908.

19

Pan, L.; Wang, H. B.; Gao, D. C.; Chen, S. Y.; Tan, L.; Li, L. Facile synthesis of yolk-shell structured Si-C nanocomposites as anodes for lithium-ion batteries. Chem. Commun. 2014, 50, 5878-5880.

20

Tao, H. C.; Fan, L. Z.; Song, W. L.; Wu, M.; He, X. B.; Qu, X. H. Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries. Nanoscale 2014, 6, 3138-3142.

21

Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C. M.; Cui, Y. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 2012, 12, 3315-3321.

22

Zheng, J. H.; Guo, G. N.; Li, H. W.; Wang, L.; Wang, B. W.; Yu, H. J.; Yan, Y. C.; Yang, D.; Dong, A. G. Elaborately designed micro-mesoporous graphitic carbon spheres as efficient polysulfide reservoir for lithium-sulfur batteries. ACS Energy Lett. 2017, 2, 1105-1114.

23

Li, Y. Z.; Yan, K.; Lee, H. W.; Lu, Z. D.; Liu, N.; Cui, Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 2016, 1, 15029.

24

Zhao, Y. L. Bottom-up construction of highly ordered mesoporous graphene frameworks. Sci. Bull. 2015, 60, 1962-1963.

25

Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187-192.

26

Zhai, W.; Ai, Q.; Chen, L. N; Wei, S. Y.; Li, D. P.; Zhang, L.; Si, P. C.; Feng, J. K.; Ci, L. J. Walnut-inspired microsized porous silicon/graphene core-shell composites for high-performance lithium-ion battery anodes. Nano Res. 2017, 10, 4274-4283.

27

Lu, B.; Ma, B. J.; Deng, X. L.; Li, W. W.; Wu, Z. Y.; Shu, H. B.; Wang, X. Y. Cornlike ordered mesoporous silicon particles modified by nitrogen-doped carbon layer for the application of Li-ion battery. ACS Appl. Mater. Interfaces 2017, 9, 32829-32839.

28

Zhu, Y. Q.; Cao, T.; Cao, C. B.; Ma, X. L.; Xu, X. Y.; Li, Y. D. A general synthetic strategy to monolayer graphene. Nano Res. 2018, 11, 3088-3095.

29

Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, 61, 1527-1535.

30

Chan, C. K.; Peng, H. L.; Liu, G.; Mcilwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31-35.

31

Zhang, Y. C.; You, Y.; Xin, S.; Yin, Y. X.; Zhang, J.; Wang, P.; Zheng, X. S.; Cao, F. F.; Guo, Y. G. Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 2016, 25, 120-127.

32

Kanamura, K.; Shiraishi, S.; Takezawa, H.; Takehara, Z. I. XPS analysis of the surface of a carbon electrode intercalated by lithium ions. Chem. Mater. 1997, 9, 1797-1804.

File
12274_2018_2270_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 October 2018
Revised: 06 December 2018
Accepted: 12 December 2018
Published: 28 December 2018
Issue date: March 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

A. D. acknowledges the financial support from the National Natural Science Foundation of China (Nos. 21872038 and 21373052), MOST (No. 2017YFA0207303), and Key Basic Research Program of Science and Technology Commission of Shanghai Municipality (No. 17JC1400100). D. Y. thanks to the National Natural Science Foundation of China (Nos. 51573030, 51573028 and 51773042).

Return