Journal Home > Volume 12 , Issue 9

Crystal phase engineering on photocatalytic materials is a subfield of photocatalysis with intensive research, which has been proven as a versatile approach to maneuver their performance for applications in energy- and environment-related fields. In this article, the state-of-the-art progress on phase-engineered photocatalytic materials is reviewed. Firstly, we discuss the phase engineering on pristine semiconductor photocatalysts, in which the phase-dependent light absorption, charge transfer and separation, and surface reaction behaviors in photocatalytic processes are summarized, respectively. Based on the elucidated mechanisms, the implementation of phase junctions in photocatalytic reactions is then presented. As a focus, we highlight the rational design of phase junctions toward steering the charge kinetics for enhanced photocatalytic and photoelectrocatalytic performance. Moreover, the crystal phase engineering on semiconductor-based hybrid photocatalysts is also introduced, which underlines the importance of choosing a suitable phase for semiconductor components and co-catalysts as well as the synergism of different semiconductor phases for improved photocatalytic performance. Finally, the challenges and perspectives in this research field are proposed. In this review, particular emphasis is placed on establishing a linkage between crystal phase and photocatalytic activity to develop a structure-activity guide. Based on the guide, a framework is suggested for future research on the rational phase design of photocatalysts for improved performance in energy and environmental applications.


menu
Abstract
Full text
Outline
About this article

Crystal phase engineering on photocatalytic materials for energy and environmental applications

Show Author's information Song Bai1,2( )Chao Gao2Jingxiang Low2Yujie Xiong2( )
Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life SciencesInstitute of Physical and ChemistryZhejiang Normal UniversityJinhua321004China
Hefei National Laboratory for Physical Sciences at the MicroscaleiChEM (Collaborative Innovation Center of Chemistry for Energy Materials)School of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaHefei230026China

Abstract

Crystal phase engineering on photocatalytic materials is a subfield of photocatalysis with intensive research, which has been proven as a versatile approach to maneuver their performance for applications in energy- and environment-related fields. In this article, the state-of-the-art progress on phase-engineered photocatalytic materials is reviewed. Firstly, we discuss the phase engineering on pristine semiconductor photocatalysts, in which the phase-dependent light absorption, charge transfer and separation, and surface reaction behaviors in photocatalytic processes are summarized, respectively. Based on the elucidated mechanisms, the implementation of phase junctions in photocatalytic reactions is then presented. As a focus, we highlight the rational design of phase junctions toward steering the charge kinetics for enhanced photocatalytic and photoelectrocatalytic performance. Moreover, the crystal phase engineering on semiconductor-based hybrid photocatalysts is also introduced, which underlines the importance of choosing a suitable phase for semiconductor components and co-catalysts as well as the synergism of different semiconductor phases for improved photocatalytic performance. Finally, the challenges and perspectives in this research field are proposed. In this review, particular emphasis is placed on establishing a linkage between crystal phase and photocatalytic activity to develop a structure-activity guide. Based on the guide, a framework is suggested for future research on the rational phase design of photocatalysts for improved performance in energy and environmental applications.

Keywords: photocatalysis, environment, energy, crystal phase, charge kinetics, architectural design

References(240)

1

Linsebigler, A. L.; Lu G. Q.; Yates., J. T., Jr. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735-758.

2

Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69-96.

3

Ma, Y.; Wang, X. L.; Jia, Y. S.; Chen, X. B.; Han, H. X.; Li, C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 2014, 114, 9987-10043.

4

Wang, X. X.; Jing, D. W.; Ni, M. Solar photocatalytic energy conversion. Sci. Bull. 2017, 62, 597-598.

5

Chen, X. B.; Chen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503-6570.

6

Wu, L. Z.; Chen, B.; Li, Z. J.; Tung, C. H. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly. Acc. Chem. Res. 2014, 47, 2177-2185.

7

White, J. L.; Baruch, M. F.; Pander Ⅲ, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888-12935.

8

Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. , Int. Ed. 2013, 52, 7372-7408.

9

Tu, W. G.; Zou, Y.; Zhou, Z. G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607-4626.

10

Chong, M. N.; Jin, B.; Chow, C. W. K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997-3027.

11

Shi, R.; Waterhouse, G. I. N.; Zhang, T. R. Recent progress in photocatalytic CO2 reduction over perovskite oxides. Solar RRL 2017, 1, 1700126.

12

Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. J. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893-2939.

13

Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229-251.

14

Kudo A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253-278.

15

Li, X.; Yu, J. G.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603-2636.

16

Gao, C.; Wang, J.; Xu, H. X.; Xiong, Y. J. Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev. 2017, 46, 2799-2823.

17

Youngblood, W. J.; Lee, S. H. A.; Maeda, K.; Mallouk, T. E. Visible light water splitting using dye-sensitized oxide semiconductors. Acc. Chem. Res. 2009, 42, 1966-1973.

18

Tran, P. D.; Wong, L. H.; Barber J.; Loo, J. S. C. Recent advances in hybrid photocatalysts for solar fuel production. Energy Environ. Sci. 2012, 5, 5902-5918.

19

Qu, Y. Q.; Duan, X. F. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 2013, 42, 2568-2580.

20

Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234-5244.

21

Gao, X. H.; Wu, H. B.; Zheng, L. X.; Zhong, Y. J.; Hu, Y.; Lou X. W. Formation of mesoporous heterostructured BiVO4/Bi2S3 hollow discoids with enhanced photoactivity. Angew. Chem. , Int. Ed. 2014, 53, 5917-5921.

22

Zhao, Y. F.; Li, Z. H.; Li, M. Z.; Liu, J. J.; Liu, X. W.; Water, G. I. N.; Wang, Y. S.; Zhao, J. Q.; Gao, W.; Zhang, Z. S. et al. Reductive transformation of layered-double-hydroxide nanosheets to Fe-based heterostructures for efficient visible-light photocatalytic hydrogenation of CO. Adv. Mater. 2018, 30, 1803127.

23

Yang, J. H.; Wang, D. G.; Han, H. X.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900-1909.

24

Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787-7812.

25

Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.

26

Bai, S.; Xiong, Y. J. Some recent developments in surface and interface design for photocatalytic and electrocatalytic hybrid structures. Chem. Commun. 2015, 51, 10261-10271.

27

Bai, S.; Jiang, W. Y.; Li, Z. Q.; Xiong, Y. J. Surface and interface engineering in photocatalysis. ChemNanoMat 2015, 1, 223-239.

28

Yu. H. J.; Shi, R.; Zhao, Y. X.; Bian, T.; Zhao, Y. F.; Zhou. C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 2017, 29, 1605148.

29

Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin, S. A.; Logsdail, A. J.; Woodley, S. M.; Catlow, C. R. A.; Powell, M. J.; Palgrave, R. G.; Parkin, I. P. et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 2013, 12, 798-801.

30

Nosaka, Y.; Nosaka, A. Y. Reconsideration of intrinsic band alignments within anatase and rutile TiO2. J. Phys. Chem. Lett. 2016, 7, 431-434.

31

Sarkar, T.; Gopinadhan, K.; Zhou, J.; Saha, S.; Coey, J. M. D.; Feng, Y. P.; Ariando; Venkatesan, T. Electron transport at the TiO2 surfaces of rutile, anatase, and strontium titanate: The influence of orbital corrugation. ACS Appl. Mater. Interfaces 2015, 7, 24616-24621.

32

Wang, X. L.; Kafizas, A.; Li, X. E.; Moniz, S. J. A.; Reardon, P. J. T.; Tang, J. W.; Parkin, I. P.; Durrant, J. R. Transient absorption spectroscopy of anatase and rutile: The impact of morphology and phase on photocatalytic activity. J. Phys. Chem. C 2015, 119, 10439-10447.

33

Thomas, A. G.; Syres, K. L. Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces. Chem. Soc. Rev. 2012, 41, 4207-4217.

34

Bourikas, K.; Kordulis, C.; Lycourghiotis, A. Titanium dioxide (anatase and rutile): Surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts. Chem. Rev. 2014, 114, 9754-9823.

35

Liu, L. J.; Zhao, H. L.; Andino, J. M.; Li, Y. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal. 2012, 2, 1817-1828.

36

Tsukamoto, D.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J. Am. Chem. Soc. 2012, 134, 6309-6315.

37

Bai, Y.; Huang, H.; Wang, C. M.; Long, R.; Xiong, Y. J. Engineering the surface charge states of nanostructures for enhanced catalytic performance. Mater. Chem. Front. 2017, 1, 1951-1964.

38

Zhang, J.; Xu, Q.; Feng, Z. C.; Li, M. J.; Li, C. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem., Int. Ed. 2008, 47, 1766-1769.

39

Wang, X.; Xu, Q.; Li, M. R.; Shen, S.; Wang, X. L.; Wang, Y. C.; Feng, Z. C.; Shi, J. Y.; Han, H. X.; Li, C. Photocatalytic overall water splitting promoted by an α-β phase junction on Ga2O3. Angew. Chem., Int. Ed. 2012, 51, 13089-13092.

40

Ma, Y.; Wang, X. L.; Li, C. Charge separation promoted by phase junctions in photocatalysts. Chin. J. Catal. 2015, 36, 1519-1527.

41

Li, J. G.; Ishigaki, T.; Sun, X. D. Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: Phase-selective synthesis and physicochemical properties. J. Phys. Chem. C 2007, 111, 4969-4976.

42

Augugliaro, V.; Loddo, V.; López-Muñoz, M. J.; Márquez-Álvarez, C.; Palmisano, G.; Palmisano, L.; Yurdakal, S. Home-prepared anatase, rutile, and brookite TiO2 for selective photocatalytic oxidation of 4-methoxybenzyl alcohol in water: Reactivity and ATR-FTIR study. Photochem. Photobiol. Sci. 2009, 8, 663-669.

43

Kandiel, T. A.; Feldhoff, A.; Robben, L.; Dillert, R.; Bahnemann, D. W. Tailored titanium dioxide nanomaterials: Anatase nanoparticles and brookite nanorods as highly active photocatalysts. Chem. Mater. 2010, 22, 2050-2060.

44

Yang, Z. W.; Wang, B.; Cui, H.; An, H.; Pan, Y.; Zhai, J. P. Synthesis of crystal-controlled TiO2 nanorods by a hydrothermal method: Rutile and brookite as highly active photocatalysts. J. Phys. Chem. C 2015, 119, 16905-16912.

45

Yurdakal, S.; Tek, B. S.; Alagöz, O.; Augugliaro, V.; Loddo, V.; Palmisano, G.; Palmisano, L. Photocatalytic selective oxidation of 5-(hydroxymethyl)-2-furaldehyde to 2, 5-furandicarbaldehyde in water by using anatase, rutile, and brookite TiO2 nanoparticles. ACS Sustainable Chem. Eng. 2013, 1, 456-461.

46

Zhang, J.; Yan, S.; Fu, L.; Wang, F.; Yuan, M. Q.; Luo, G. X.; Xu, Q.; Wang, X.; Li, C. Photocatalytic degradation of rhodamine B on anatase, rutile, and brookite TiO2. Chin. J. Catal. 2011, 32, 983-991.

47

Addamo, M.; Bellardita, M.; Di Paola, A.; Palmisano, L. Preparation and photoactivity of nanostructured anatase, rutile and brookite TiO2 thin films. Chem. Commun. 2006, 4943-4945.

48

Sun, Q.; Xu, Y. M. Evaluating intrinsic photocatalytic activities of anatase and rutile TiO2 for organic degradation in water. J. Phys. Chem. C 2010, 114, 18911-18918.

49

Silva, C. G.; Faria, J. L. Anatase vs. rutile efficiency on the photocatalytic degradation of clofibric acid under near UV to visible irradiation. Photochem. Photobiol. Sci. 2009, 8, 705-711.

50

Tran, H. T. T.; Kosslick, H.; Ibad, M. F.; Fischer, C.; Bentrup, U.; Vuong, T. H.; Nguyen, L. Q.; Schulz, A. Photocatalytic performance of highly active brookite in the degradation of hazardous organic compounds compared to anatase and rutile. Appl. Catal. B: Environ. 2017, 200, 647-658.

51

Puddu, V.; Choi, H.; Dionysiou, D. D.; Puma, G. L. TiO2 photocatalyst for indoor air remediation: Influence of crystallinity, crystal phase, and UV radiation intensity on trichloroethylene degradation. Appl. Catal. B: Environ. 2010, 94, 211-218.

52

Testino, A.; Bellobono, I. R.; Buscaglia, V.; Canevali, C.; D'Arienzo, M.; Polizzi, S.; Scotti, R.; Morazzoni, F. Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach. J. Am. Chem. Soc. 2007, 129, 3564-3575.

53

Scotti, R.; Bellobono, I. R.; Canevali, C.; Cannas, C.; Catti, M.; D'Arienzo, M.; Musinu, A.; Polizzi, S.; Sommariva, M.; Testino, A. et al. Sol-gel pure and mixed-phase titanium dioxide for photocatalytic purposes: Relations between phase composition, catalytic activity, and charge-trapped sites. Chem. Mater. 2008, 20, 4051-4061.

54

Nayak, A. K.; Lee, S.; Choi, Y. I.; Yoon, H. J.; Sohn, Y.; Pradhan, D. Crystal phase and size-controlled synthesis of tungsten trioxide hydrate nanoplates at room temperature: Enhanced Cr(Ⅵ) photoreduction and methylene blue adsorption properties. ACS Sustainable Chem. Eng. 2017, 5, 2741-2750.

55

Nagy, D.; Nagy, D.; Szilagyi, I. M.; Fan, X. F. Effect of the morphology and phases of WO3 nanocrystals on their photocatalytic efficiency. RSC Adv. 2016, 6, 33743-33754.

56

Zhang, S. Y.; Li, H.; Yang, Z. F. Controllable synthesis of WO3 with different crystalline phases and its applications on methylene blue removal from aqueous solution. J. Alloy Compd. 2017, 722, 555-563.

57

Qiu, Y. F.; Yang, M. L.; Fan, H. B.; Zuo, Y. Z.; Shao, Y. Y.; Xu, Y. J.; Yang, X. X.; Yang, S. H. Nanowires of α- and β-Bi2O3: Phase-selective synthesis and application in photocatalysis. CrystEngComm 2011, 13, 1843-1850.

58

Ghodsi, V.; Jin, S. S.; Byers, J. C.; Pan, Y.; Radovanovic, P. V. Anomalous photocatalytic activity of nanocrystalline γ-Phase Ga2O3 enabled by long- lived defect trap states. J. Phys. Chem. C 2017, 121, 9433-9441.

59

Hou, Y. D.; Wu, L.; Wang, X. C.; Ding, Z. X.; Li, Z. H.; Fu, X. Z. Photocatalytic performance of α-, β-, and γ-Ga2O3 for the destruction of volatile aromatic pollutants in air. J. Catal. 2007, 250, 12-18.

60

Lang, D.; Xiang, Q. J.; Qiu, G. H.; Feng, X. G.; Liu, F. Effects of crystalline phase and morphology on the visible light photocatalytic H2-production activity of CdS nanocrystals. Dalton Trans. 2014, 43, 7245-7253.

61

Bao, N. Z.; Shen, L. M.; Takata, T.; Domen, K.; Gupta, A.; Yanagisawa K.; Grimes, C. A. Facile Cd-thiourea complex thermolysis synthesis of phase-controlled CdS nanocrystals for photocatalytic hydrogen production under visible light. J. Phys. Chem. C 2007, 111, 17527-17534.

62

Hong, Y. P.; Zhang, J.; Wang, X.; Wang, Y. J.; Lin, Z.; Yu, J. G.; Huang, F. Influence of lattice integrity and phase composition on the photocatalytic hydrogen production efficiency of ZnS nanomaterials. Nanoscale 2012, 4, 2859-2862.

63

Zhang, L. H.; Yang, H. Q.; Yu, J.; Shao, F. H.; Li, L.; Zhang, F. H.; Zhao, H. Controlled synthesis and photocatalytic activity of ZnSe nanostructured assemblies with different morphologies and crystalline phases. J. Phys. Chem. C 2009, 113, 5434-5443.

64

Chen, D. M.; Hao, Q.; Wang, Z. H.; Ding, H.; Zhu, Y. F. Influence of phase structure and morphology on the photocatalytic activity of bismuth molybdates. CrystEngComm 2016, 18, 1976-1986.

65

Li, P.; Ouyang, S. X.; Xi, G. C.; Kako, T.; Ye, J. H. The effects of crystal structure and electronic structure on photocatalytic H2 evolution and CO2 reduction over two phases of perovskite-structured NaNbO3. J. Phys. Chem. C 2012, 116, 7621-7628.

66

Yan, L. S.; Zhang, J.; Zhou, X. M.; Wu, X. X.; Lan, J. Y.; Wang, Y. S.; Liu, G.; Yu J. G.; Zhi, L. J. Crystalline phase-dependent photocatalytic water splitting for hydrogen generation on KNbO3 submicro-crystals. Int. J. Hydrogen Energy 2013, 38, 3554-3561.

67

Ouyang, S. X.; Kikugawa, N.; Chen, D.; Zou, Z. G.; Ye, J. H. A systematical study on photocatalytic properties of AgMO2 (M = Al, Ga, In): Effects of chemical compositions, crystal structures, and electronic structures. J. Phys. Chem. C 2009, 113, 1560-1566.

68

Wang, J. H.; Li, J. Z.; Li, H.; Duan, S. X.; Meng, S. G.; Fu, X. L.; Chen, S. F. Crystal phase-controlled synthesis of BiPO4 and the effect of phase structure on the photocatalytic degradation of gaseous benzene. Chem. Eng. J. 2017, 330, 433-441.

69

Liu, Y. Y.; Huang, B. B.; Dai, Y.; Zhang, X. Y.; Qin, X. Y.; Jiang, M. H.; Whangbo, M. H. Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst. Catal. Commun. 2009, 11, 210-213.

70

Kudo, A.; Omori, K.; Kato, H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 1999, 121, 11459-11467.

71

Tokunaga, S.; Kato, H.; Kudo, A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater. 2001, 13, 4624-4628.

72

Zhang, X.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z.; Fan, X. X.; Zou, Z. G. Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases. Mater. Chem. Phys. 2007, 103, 162-167.

73

Zhao, G.; Wang, T. L.; Shao, Y. L.; Wu, Y. Z.; Huang, B. B.; Hao, X. P. A novel mild phase-transition to prepare black phosphorus nanosheets with excellent energy applications. Small 2017, 13, 1602243.

74

Chang, Z. X.; Zhou, W. H.; Kou, D. X.; Zhou, Z. J.; Wu, S. X. Phase- dependent photocatalytic H2 evolution of copper zinc tin sulfide under visible light. Chem. Commun. 2014, 50, 12726-12729.

75

Liu, G.; Wang, L. Z.; Yang, H. G.; Cheng, H. M.; Lu, G. Q. Titania-based photocatalysts-crystal growth, doping and heterostructuring. J. Mater. Chem. 2010, 20, 831-843.

76

Hu, W. B.; Li, L. P.; Li, G. S.; Tang, C. L.; Sun, L. High-quality brookite TiO2 flowers: Synthesis, characterization, and dielectric performance. Cryst. Growth Des. 2009, 9, 3676-3682.

77

Zhang, J. F.; Zhou, P.; Liu, J. J.; Yu, J. G. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 2014, 16, 20382-20386.

78

Xu, M. C.; Gao, Y. K.; Moreno, E. M.; Kunst, M.; Muhler, M.; Wang, Y. M.; Idriss, H.; Wöll, C. Photocatalytic activity of bulk TiO2 anatase and rutile single crystals using infrared absorption spectroscopy. Phys. Rev. Lett. 2011, 106, 138302.

79

Luttrell, T.; Halpegamage, S.; Tao, J. G.; Kramer, A.; Sutter, E.; Batzill, M. Why is anatase a better photocatalyst than rutile? -Model studies on epitaxial TiO2 films. Sci. Rep. 2014, 4, 4043.

80

Maity, P.; Mohammed, O. F.; Katsiev, K.; Idriss, H. Study of the bulk charge carrier dynamics in anatase and rutile TiO2 single crystals by femtosecond time-resolved spectroscopy. J. Phys. Chem. C 2018, 122, 8925-8932.

81

Yan, J. Q.; Wu, G. J.; Guan, N. J.; Li, L. D.; Li, Z. X.; Cao, X. Z. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile. Phys. Chem. Chem. Phys. 2013, 15, 10978-10988.

82

Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296-336.

83

Sachs, M.; Pastor, E.; Kafizas, A.; Durrant, J. R. Evaluation of surface state mediated charge recombination in anatase and rutile TiO2. J. Phys. Chem. Lett. 2016, 7, 3742-3746.

84

Vequizo, J. J. M.; Matsunaga, H.; Ishiku, T.; Kamimura, S.; Ohno, T.; Yamakata, A. Trapping-induced enhancement of photocatalytic activity on brookite TiO2 powders: Comparison with anatase and rutile TiO2 powders. ACS Catal. 2017, 7, 2644-2651.

85

Batzill, M. Fundamental aspects of surface engineering of transition metal oxide photocatalysts. Energy Environ. Sci. 2011, 4, 3275-3286.

86

Zawadzki, P.; Laursen, A. B.; Jacobsen, K. W.; Dahl, S.; Rossmeisl, J. Oxidative trends of TiO2-hole trapping at anatase and rutile surfaces. Energy Environ. Sci. 2012, 5, 9866-9869.

87

Liu, G.; Yang, H. G.; Pan, J.; Yang, Y. Q.; Lu, G. Q.; Cheng, H. M. Titanium dioxide crystals with tailored facets. Chem. Rev. 2014, 114, 9559-9612.

88

Bai, S.; Wang, L. L.; Li, Z. Q.; Xiong, Y. J. Facet-engineered surface and interface design of photocatalytic materials. Adv. Sci. 2017, 4, 1600216.

89

Ahmed, A. Y.; Kandiel, T. A.; Oekermann, T.; Bahnemann, D. Photocatalytic activities of different well-defined single crystal TiO2 surfaces: Anatase versus rutile. J. Phys. Chem. Lett. 2011, 2, 2461-2465.

90

Sun, H. J.; Mowbray, D. J.; Migani, A.; Zhao, J.; Petek, H.; Rubio, A. Comparing quasiparticle H2O level alignment on anatase and rutile TiO2. ACS Catal. 2015, 5, 4242-4254.

91

Zhao, W. N.; Liu, Z. P. Mechanism and active site of photocatalytic water splitting on titania in aqueous surroundings. Chem. Sci. 2014, 5, 2256-2264.

92

Li, Y. F.; Selloni, A. Pathway of photocatalytic oxygen evolution on aqueous TiO2 anatase and insights into the different activities of anatase and rutile. ACS Catal. 2016, 6, 4769-4774.

93

Kandiel, T. A.; Robben, L.; Alkaim, A.; Bahnemann, D. Brookite versus anatase TiO2 photocatalysts: Phase transformations and photocatalytic activities. Photochem. Photobiol. Sci. 2013, 12, 602-609.

94

Li, Z.; Cong, S.; Xu, Y. M. Brookite vs anatase TiO2 in the photocatalytic activity for organic degradation in water. ACS Catal. 2014, 4, 3273-3280.

95

Mattsson, A.; Österlund, L. Adsorption and photoinduced decomposition of acetone and acetic acid on anatase, brookite, and rutile TiO2 nanoparticles. J. Phys. Chem. C 2010, 114, 14121-14132.

96

Matsushita, M.; Tran, T. H.; Nosaka, A. Y.; Nosaka, Y. Photo-oxidation mechanism of L-alanine in TiO2 photocatalytic systems as studied by proton NMR spectroscopy. Catal. Today 2007, 120, 240-244.

97

Bui, T. D.; Kimura, A.; Ikeda, S.; Matsumura, M. Determination of oxygen sources for oxidation of benzene on TiO2 photocatalysts in aqueous solutions containing molecular oxygen. J. Am. Chem. Soc. 2010, 132, 8453-8458.

98

Buchalska, M.; Kobielusz, M.; Matuszek, A.; Pacia, M.; Wojtyła, S.; Macyk, W. On oxygen activation at rutile- and anatase-TiO2. ACS Catal. 2015, 5, 7424-7431.

99

Hirakawa, T.; Yawata, K.; Nosaka, Y. Photocatalytic reactivity for O2·- and OH· radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition. Appl. Catal. A: Gen. 2007, 325, 105-111.

100

Kim, W.; Tachikawa, T.; Moon, G. H.; Majima, T.; Choi, W. Molecular- level understanding of the photocatalytic activity difference between anatase and rutile nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 14036-14041.

101

Odling, G.; Robertson, N. Why is anatase a better photocatalyst than rutile? The importance of free hydroxyl radicals. ChemSusChem 2015, 8, 1838-1840.

102

Li, R. G.; Weng, Y. X.; Zhou, X.; Wang, X. L.; Mi, Y.; Chong, R. F.; Han, H. X.; Li, C. Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases. Energy Environ. Sci. 2015, 8, 2377-2382.

103

Bickley, R. I.; Gonzalez-Carreno, T.; Lees, J. S.; Palmisano, L.; Tilley, R. J. D. A structural investigation of titanium dioxide photocatalysts. J. Solid State Chem. 1991, 92, 178-190.

104

Datye, A. K.; Riegel, G.; Bolton, J. R.; Huang, M.; Prairie, M. R. Microstructural characterization of a fumed titanium dioxide photocatalyst. J. Solid State Chem. 1995, 115, 236-239.

105

Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J. Catal. 2001, 203, 82-86.

106

Kawahara, T.; Konishi, Y.; Tada, H.; Tohge, N.; Nishii, J.; Ito, S. A patterned TiO2(anatase)/TiO2(rutile) bilayer-type photocatalyst: Effect of the anatase/rutile junction on the photocatalytic activity. Angew. Chem., Int. Ed. 2002, 41, 2811-2813.

DOI
107

Sun, B.; Vorontsov, A. V.; Smirniotis, P. G. Role of platinum deposited on TiO2 in phenol photocatalytic oxidation. Langmuir 2003, 19, 3151-3156.

108

Hurum, D. C.; Agrios, A. G.; Gray, K. A. Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 2003, 107, 4545-4549.

109

Zachariah, A.; Baiju, K. V.; Shukla, S.; Deepa, K. S.; James, J.; Warrier, K. G. K. Synergistic effect in photocatalysis as observed for mixed-phase nanocrystalline titania processed via sol-gel solvent mixing and calcination. J. Phys. Chem. C 2008, 112, 11345-11356.

110

Cao, F. R.; Xiong, J.; Wu, F. L.; Liu, Q.; Shi, Z. W.; Yu, Y. H.; Wang, X. D.; Li, L. Enhanced photoelectrochemical performance from rationally designed anatase/rutile TiO2 heterostructures. ACS Appl. Mater. Interfaces 2016, 8, 12239-12245.

111

Liu, J.; Yu, X. L.; Liu, Q. Y.; Liu, R. J.; Shang, X. K.; Zhang, S. S.; Li, W. H.; Zheng, W. Q.; Zhang, G. J.; Cao, H. et al. Surface-phase junctions of branched TiO2 nanorod arrays for efficient photoelectrochemical water splitting. Appl. Catal. B: Environ. 2014, 158-159, 296-300.

112

Liu, G.; Yan, X. X.; Chen, Z. G.; Wang, X. W.; Wang, L. Z.; Lu, G. Q.; Cheng, H. M. Synthesis of rutile-anatase core-shell structured TiO2 for photocatalysis. J. Mater. Chem. 2009, 19, 6590-6596.

113

Luo, Y.; Liu, X. Y.; Huang, J. G. Heterogeneous nanotubular anatase/rutile titania composite derived from natural cellulose substance and its photocatalytic property. CrystEngComm 2013, 15, 5586-5590.

114

Cao, L.; Chen, D. H.; Li, W.; Caruso, R. A. Hierarchically porous titania networks with tunable anatase: Rutile ratios and their enhanced photocatalytic activities. ACS Appl. Mater. Interfaces 2014, 6, 13129-13137.

115

Luo, Z.; Poyraz, A. S.; Kuo, C. H.; Miao, R.; Meng, Y. T.; Chen, S. Y.; Jiang, T.; Wenos, C.; Suib, S. L. Crystalline mixed phase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalytic activity. Chem. Mater. 2015, 27, 6-17.

116

Wang, W. K.; Chen, J. J.; Zhang, X.; Huang, Y. X.; Li, W. W.; Yu, H. Q. Self-induced synthesis of phase-junction TiO2 with a tailored rutile to anatase ratio below phase transition temperature. Sci. Rep. 2016, 6, 20491.

117

Xiong, Z. G.; Wu, H.; Zhang, L. H.; Gu Y.; Zhao, X. S. Synthesis of TiO2 with controllable ratio of anatase to rutile. J. Mater. Chem. A 2014, 2, 9291-9297.

118

Fu, W. W.; Li, G. D.; Wang, Y.; Zeng, S. J.; Yan, Z. J.; Wang, J. W.; Xin, S. G.; Zhang, L.; Wu S. W.; Zhang, Z. T. Facile formation of mesoporous structured mixed-phase (anatase/rutile) TiO2 with enhanced visible light photocatalytic activity. Chem. Commun. 2018, 54, 58-61.

119

Cai, F. P.; Tang, Y. B.; Shen, H.; Wang, C.; Ren, A.; Xiao, L. S.; Gu W.; Shi, W. D. Graphene oxide-assisted synthesis and photocatalytic hydrogen production of mix-phase titanium dioxide (TiO2) nanosheets. CrystEngComm 2015, 17, 1086-1091.

120

Kafizas, A.; Carmalt, C. J.; Parkin, I. P. Does a photocatalytic synergy in an anatase-rutile TiO2 composite thin-film exist? Chem. -Eur. J. 2012, 18, 13048-13058.

121

An, X. Q.; Hu, C. Z.; Liu, H. J.; Qu, J. H. Oxygen vacancy mediated construction of anatase/brookite heterophase junctions for high-efficiency photocatalytic hydrogen evolution. J. Mater. Chem. A 2017, 5, 24989- 24994.

122

Tay, Q.; Liu, X. F.; Tang, Y. X.; Jiang, Z. L.; Sum, T. C.; Chen, Z. Enhanced photocatalytic hydrogen production with synergistic two-phase anatase/brookite TiO2 nanostructures. J. Phys. Chem. C 2013, 117, 14973-14982.

123

Liu, Y. X.; Wang, Z. L.; Wang, W. D.; Huang, W. X. Engineering highly active TiO2 photocatalysts via the surface-phase junction strategy employing a titanate nanotube precursor. J. Catal. 2014, 310, 16-23.

124

Gai, L. G.; Duan, X. Q.; Jiang, H. H.; Mei, Q. H.; Zhou, G. W.; Tian, Y.; Liu, H. One-pot synthesis of nitrogen-doped TiO2 nanorods with anatase/brookite structures and enhanced photocatalytic activity. CrystEngComm 2012, 14, 7662-7671.

125

Zhao, H. L.; Liu, L. J.; Andino, J. M.; Li, Y. Bicrystalline TiO2 with controllable anatase-brookite phase content for enhanced CO2 photoreduction to fuels. J. Mater. Chem. A 2013, 1, 8209-8216.

126

Lee, H. U.; Lee, S. C.; Seo, J. H.; Hong, W. G.; Kim, H.; Yun, H. J.; Kim, H. J.; Lee, J. Room temperature synthesis of nanoporous anatase and anatase/brookite TiO2 photocatalysts with high photocatalytic performance. Chem. Eng. J. 2013, 223, 209-215.

127

El-Sheikh, S. M.; Khedr, T. M.; Zhang, G. S.; Vogiazi, V.; Ismail, A. A.; O'Shea, K.; Dionysiou, D. D. Tailored synthesis of anatase-brookite heterojunction photocatalysts for degradation of cylindrospermopsin under UV-Vis light. Chem. Eng. J. 2017, 310, 428-436.

128

Xu, H.; Zhang, L. Z. Controllable one-pot synthesis and enhanced photocatalytic activity of mixed-phase TiO2 nanocrystals with tunable brookite/rutile ratios. J. Phys. Chem. C 2009, 113, 1785-1790.

129

Pikuda, O.; Garlisi, C.; Scandura, G.; Palmisano, G. Micro-mesoporous N-doped brookite-rutile TiO2 as efficient catalysts for water remediation under UV-free visible LED radiation. J. Catal. 2017, 346, 109-116.

130

Cao, Y. F.; Li, X. T.; Bian, Z. F.; Fuhr, A.; Zhang, D. Q.; Zhu, J. Highly photocatalytic activity of brookite/rutile TiO2 nanocrystals with semi-embedded structure. Appl. Catal. B: Environ. 2016, 180, 551-558.

131

Yang, D. J.; Liu, H. W.; Zheng, Z. F.; Yuan, Y.; Zhao, J. C.; Waclawik, E. R.; Ke, X. B.; Zhu, H. Y. An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals. J. Am. Chem. Soc. 2009, 131, 17885-17893.

132

Liu, B.; Khare, A.; Aydil, E. S. TiO2-B/anatase core-shell heterojunction nanowires for photocatalysis. ACS Appl. Mater. Interfaces 2011, 3, 4444-4450.

133

Li, W.; Liu, C.; Zhou, Y. X.; Bai, Y.; Feng, X.; Yang, Z. H.; Lu, L. H.; Lu, X. H.; Chan, K. Y. Enhanced photocatalytic activity in anatase/TiO2(B) core-shell nanofiber. J. Phys. Chem. C 2008, 112, 20539-20545.

134

Zhou, W. J.; Gai, L. G.; Hu, P. G.; Cui, J. J.; Liu, X. Y.; Wang, D. Z.; Li, G. H.; Jiang, H. D.; Liu, D.; Liu, H. et al. Phase transformation of TiO2 nanobelts and TiO2(B)/anatase interface heterostructure nanobelts with enhanced photocatalytic activity. CrystEngComm 2011, 13, 6643-6649.

135

Ju, M. G.; Wang, X.; Liang, W. Z.; Zhao, Y.; Li, C. Tuning the energy band-gap of crystalline gallium oxide to enhance photocatalytic water splitting: Mixed-phase junctions. J. Mater. Chem. A 2014, 2, 17005-17014.

136

Jin, S. Q.; Wang, X.; Wang, X. L.; Ju, M. G.; Shen, S.; Liang, W. Z.; Zhao, Y.; Feng, Z. C.; Playford, H. Y.; Walton, R. I. et al. Effect of phase junction structure on the photocatalytic performance in overall water splitting: Ga2O3 photocatalyst as an example. J. Phys. Chem. C 2015, 119, 18221-18228.

137

Li, Y. S.; Tang, Z. L.; Zhang, J. Y.; Zhang, Z. T. Fabrication of vertical orthorhombic/hexagonal tungsten oxide phase junction with high photocatalytic performance. Appl. Catal. B: Environ. 2017, 207, 207-217.

138

Hou, J. G.; Yang, C.; Wang, Z.; Zhou, W. L.; Jiao, S. Q.; Zhu, H. M. In situ synthesis of α-β phase heterojunction on Bi2O3 nanowires with exceptional visible-light photocatalytic performance. Appl. Catal. B: Environ. 2013, 142-143, 504-511.

139

Bera, K. K.; Majumdar, R.; Chakraborty, M.; Bhattacharya, S. K. Phase control synthesis of α, β and α/β Bi2O3 hetero-junction with enhanced and synergistic photocatalytic activity on degradation of toxic dye, Rhodamine-B under natural sunlight. J. Hazard. Mater. 2018, 352, 182-191.

140

Li, K.; Han, M.; Chen, R.; Li, S. L.; Xie, S. L.; Mao, C. Y.; Bu, X. H.; Cao, X. L.; Dong, L. Z.; Feng, P. Y. et al. Hexagonal@cubic CdS core@shell nanorod photocatalyst for highly active production of H2 with unprecedented stability. Adv. Mater. 2016, 28, 8906-8911.

141

Chai, Y.; Lu, J. X.; Li, L.; Li, D. L.; Li, M.; Liang, J. TEOA-induced in situ formation of wurtzite and zinc-blende CdS heterostructures as a highly active and long-lasting photocatalyst for converting CO2 into solar fuel. Catal. Sci. Technol. 2018, 8, 2697-2706.

142

Shen, Q. Q.; Xue, J. B.; Mi, A. M.; Jia, H. S.; Liu, X. G.; Xu, B. S. The study on properties of CdS photocatalyst with different ratios of zinc- blende and wurtzite structure. RSC Adv. 2013, 3, 20930-20935.

143

Ai, Z. Z.; Zhao, G.; Zhong, Y. Y.; Shao, Y. L.; Huang, B. B.; Wu, Y. Z.; Hao, X. P. Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation. Appl. Catal. B: Environ. 2018, 221, 179-186.

144

Fang, Z. B.; Weng, S. X.; Ye, X. X.; Feng, W. H.; Zheng, Z. Y.; Lu, M. L.; Lin, S.; Fu, X. Z.; Liu, P. Defect engineering and phase junction architecture of wide-bandgap ZnS for conflicting visible light activity in photocatalytic H2 evolution. ACS Appl. Mater. Interfaces 2015, 7, 13915-13924.

145

Qi, Y. H.; Xu, Q.; Wang, Y.; Yan, B.; Ren, Y. M.; Chen, Z. M. CO2- induced phase engineering: Protocol for enhanced photoelectrocatalytic performance of 2D MoS2 nanosheets. ACS Nano 2016, 10, 2903-2909.

146

Liu, Y. Y.; Xie, Y.; Liu, L. J.; Jiao, J. L. Sulfur vacancy induced high performance for photocatalytic H2 production over 1T@2H phase MoS2 nanolayers. Catal. Sci. Technol. 2017, 7, 5635-5643.

147

Zeng, Z. X.; Yu, H. T.; Quan, X.; Chen, S.; Zhang, S. S. Structuring phase junction between tri-s-triazine and triazine crystalline C3N4 for efficient photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2018, 227, 153-160.

148

Shen, Z. R.; Sun, S. T.; Wang, W. J.; Liu, J. W.; Liu, Z. F.; Yu, J. C. A black-red phosphorus heterostructure for efficient visible-light-driven photocatalysis. J. Mater. Chem. A 2015, 3, 3285-3288.

149

Liu, D.; Wang, J.; Zhang, M.; Liu, Y. F.; Zhu, Y. F. A superior photocatalytic performance of a novel Bi2SiO5 flower-like microsphere via a phase junction. Nanoscale 2014, 6, 15222-15227.

150

Lv, C. D.; Chen, G.; Sun, J. X.; Zhou, Y. S. Construction of α-β phase junction on Bi4V2O11 via electrospinning retardation effect and its promoted photocatalytic performance. Inorg. Chem. 2016, 55, 4782-4789.

151

Xu, J.; Mao, Y. G.; Liu, T.; Peng, Y. Synthesis of a novel one-dimensional BiOBr-Bi4O5Br2 heterostructure with a high quality interface and its enhanced visible-light photocatalytic activity. CrystEngComm 2018, 20, 2292-2298.

152

Zhu, Y. Y.; Liu, Y. F.; Lv, Y. H.; Ling, Q.; Liu, D.; Zhu, Y. F. Enhancement of photocatalytic activity for BiPO4 via phase junction. J. Mater. Chem. A 2014, 2, 13041-13048.

153

Cheng, J.; Feng, J.; Pan, W. Enhanced photocatalytic activity in electrospun bismuth vanadate nanofibers with phase junction. ACS Appl. Mater. Interfaces 2015, 7, 9638-9644.

154

Yan, M.; Yan, Y.; Wu, Y. L.; Shi, W. D.; Hua, Y. Q. Microwave-assisted synthesis of monoclinic-tetragonal BiVO4 heterojunctions with enhanced visible-light-driven photocatalytic degradation of tetracycline. RSC Adv. 2015, 5, 90255-90264.

155

Li, W. J.; Wang, X.; Wang, Z.; Meng, Y.; Sun, X. L.; Yan, T. J.; You, J. M.; Kong, D. S. Relationship between crystalline phases and photocatalytic activities of BiVO4. Mater. Res. Bull. 2016, 83, 259-267.

156

Usai, S.; Obregón, S.; Becerro, A. I.; Colon, G. Monoclinic-tetragonal heterostructured BiVO4 by yttrium doping with improved photocatalytic activity. J. Phys. Chem. C 2013, 117, 24479-24484.

157

Wang, P.; Chen, P. R.; Kostka, A.; Marschall, R.; Wark, M. Control of phase coexistence in calcium tantalate composite photocatalysts for highly efficient hydrogen production. Chem. Mater. 2013, 25, 4739-4745.

158

Qu, Y.; Zhou, W.; Xie, Y.; Jiang, L.; Wang, J. Q.; Tian, G. H.; Ren, Z. Y.; Tian, C. G.; Fu, H. G. A novel phase-mixed MgTiO3-MgTi2O5 heterogeneous nanorod for high efficiency photocatalytic hydrogen production. Chem. Commun. 2013, 49, 8510-8512.

159

Li, P.; Xu, H.; Liu, L. Q.; Kako, T.; Umezawa, N.; Abe, H.; Ye, J. H. Constructing cubic-orthorhombic surface-phase junctions of NaNbO3 towards significant enhancement of CO2 photoreduction. J. Mater. Chem. A 2014, 2, 5606-5609.

160

Sun, F.; Wang, P.; Yi, Z. X.; Wark, M.; Yang, J. H.; Wang, X. Y. Construction of strontium tantalate homo-semiconductor composite photocatalysts with a tunable type Ⅱ junction structure for overall water splitting. Catal. Sci. Technol. 2018, 8, 3025-3033.

161

Wang, J. G.; Chen, Y. J.; Zhou, W.; Tian, G. H.; Xiao, Y. T.; Fu, H. Y.; Fu, H. G. Cubic quantum dot/hexagonal microsphere ZnIn2S4 heterophase junctions for exceptional visible-light-driven photocatalytic H2 evolution. J. Mater. Chem. A 2017, 5, 8451-8460.

162

Chen, Y. J.; He, J.; Li, J. J.; Mao, M. Q.; Yan, Z. Y.; Wang, W.; Wang, J. Q. Hydrilla derived ZnIn2S4 photocatalyst with hexagonal-cubic phase junctions: A bio-inspired approach for H2 evolution. Catal. Commun. 2016, 87, 1-5.

163

Kaplan, R.; Erjavec, B.; Dražić, G.; Grdadolnik, J.; Pintar, A. Simple synthesis of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants. Appl. Catal. B: Environ. 2016, 181, 465-474.

164

Preethi, L. K.; Mathews, T.; Nand, M.; Jha, S. N.; Gopinath, C. S.; Dash, S. Band alignment and charge transfer pathway in three phase anatase-rutile-brookite TiO2 nanotubes: An efficient photocatalyst for water splitting. Appl. Catal. B: Environ. 2017, 218, 9-19.

165

Liao, Y. L.; Que, W. X.; Jia, Q. Y.; He, Y. C.; Zhang, J.; Zhong, P. Controllable synthesis of brookite/anatase/rutile TiO2 nanocomposites and single-crystalline rutile nanorods array. J. Mater. Chem. 2012, 22, 7937-7944.

166

Sun, M. X.; Kong, Y. Y.; Fang, Y. L.; Sood, S.; Yao, Y.; Shi, J. F.; Umar, A. Hydrothermal formation of N/Ti3+ codoped multiphasic (brookite-anatase-rutile) TiO2 heterojunctions with enhanced visible light driven photocatalytic performance. Dalton Trans. 2017, 46, 15727-15735.

167

Mutuma, B. K.; Shao, G. N.; Kim, W. D.; Kim, H. T. Sol-gel synthesis of mesoporous anatase-brookite and anatase-brookite-rutile TiO2 nanoparticles and their photocatalytic properties. J. Colloid Interface Sci. 2015, 442, 1-7.

168

An, X. Q.; Hu, C. Z.; Liu, H. J.; Qu, J. H. Hierarchical nanotubular anatase/rutile/TiO2(B) heterophase junction with oxygen vacancies for enhanced photocatalytic H2 Production. Langmuir 2018, 34, 1883-1889.

169

Etacheri, V.; Seery, M. K.; Hinder, S. J.; Pillai, S. C. Nanostructured Ti1-xSxO2-yNy heterojunctions for efficient visible-light-induced photocatalysis. Inorg. Chem. 2012, 51, 7164-7173.

170

Peng, R.; Liang, L. B.; Hood, Z. D.; Boulesbaa, A.; Puretzky, A.; Ievlev, A. V.; Come, J.; Ovchinnikova, O. S.; Wang, H.; Ma, C. et al. In-plane heterojunctions enable multiphasic two-dimensional (2D) MoS2 nanosheets as efficient photocatalysts for hydrogen evolution from water reduction. ACS Catal. 2016, 6, 6723-6729.

171

Miyagi, T.; Kamei, M.; Mitsuhashi, T.; Ishigaki, T.; Yamazaki, A. Charge separation at the rutile/anatase interface: A dominant factor of photocatalytic activity. Chem. Phys. Lett. 2004, 390, 399-402.

172

Kang, J.; Wu, F. M.; Li, S. S.; Xia, J. B.; Li, J. B. Calculating band alignment between materials with different structures: The case of anatase and rutile titanium dioxide. J. Phys. Chem. C 2012, 116, 20765-20768.

173

Zhou, Y.; Chen, C. H.; Wang, N. N.; Li, Y. Y.; Ding, H. M. Stable Ti3+ self-doped anatase-rutile mixed TiO2 with enhanced visible light utilization and durability. J. Phys. Chem. C 2016, 120, 6116-6124.

174

Kullgren, J.; Aradi, B.; Frauenheim, T.; Kavan, L.; Deak, P. Resolving the controversy about the band alignment between rutile and anatase: The role of OH-/H+ adsorption. J. Phys. Chem. C 2015, 119, 21952-21958.

175

Quesada-Cabrera, R.; Sotelo-Vazquez, C.; Bear, J. C.; Darr, J. A.; Parkin, I. P. Photocatalytic evidence of the rutile-to-anatase electron transfer in titania. Adv. Mater. Interfaces 2014, 1, 1400069.

176

Shingai, D.; Ide, Y.; Sohn, W. Y.; Katayama, K. Photoexcited charge carrier dynamics of interconnected TiO2 nanoparticles: Evidence of enhancement of charge separation at anatase-rutile particle interfaces. Phys. Chem. Chem. Phys. 2018, 20, 3484-3489.

177

Gao, Y. Y.; Zhu, J.; An, H. Y.; Yan, P. L.; Huang, B. K.; Chen, R. T.; Fan, F. T.; Li, C. Directly probing charge separation at interface of TiO2 phase junction. J. Phys. Chem. Lett. 2017, 8, 1419-1423.

178

Pfeifer, V.; Erhart, P.; Li, S. Y.; Rachut, K.; Morasch, J.; Brötz, J.; Reckers, P.; Mayer, T.; Rühle, S.; Zaban, A. et al. Energy band alignment between anatase and rutile TiO2. J. Phys. Chem. Lett. 2013, 4, 4182-4187.

179

Ko, K. C.; Bromley, S. T.; Lee, J. Y.; Illas, F. Size-dependent level alignment between rutile and anatase TiO2 nanoparticles: Implications for photocatalysis. J. Phys. Chem. Lett. 2017, 8, 5593-5598.

180

Zhang, D. Y.; Yang, M. N.; Dong, S. Electric-dipole effect of defects on the energy band alignment of rutile and anatase TiO2. Phys. Chem. Chem. Phys. 2015, 17, 29079-29084.

181

Cottineau, T.; Cachet, H.; Keller, V.; Sutter, E. M. M. Influence of the anatase/rutile ratio on the charge transport properties of TiO2-NTs arrays studied by dual wavelength opto-electrochemical impedance spectroscopy. Phys. Chem. Chem. Phys. 2017, 19, 31469-31478.

182

Carneiro, J. T.; Savenije, T. J.; Moulijn, J. A.; Mul, G. How phase composition influences optoelectronic and photocatalytic properties of TiO2. J. Phys. Chem. C 2011, 115, 2211-2217.

183

Su, R.; Bechstein, R.; Sø, L.; Vang, R. T.; Sillassen, M.; Esbjornsson, B.; Palmqvist, A.; Besenbacher, F. How the anatase-to-rutile ratio influences the photoreactivity of TiO2. J. Phys. Chem. C 2011, 115, 24287-24292.

184

Wang, W. K.; Chen, J. J.; Gao, M.; Huang, Y. X.; Zhang, X.; Yu, H. Q. Photocatalytic degradation of atrazine by boron-doped TiO2 with a tunable rutile/anatase ratio. Appl. Catal. B: Environ. 2016, 195, 69-76.

185

Wang, X.; Jin, S. Q.; An, H. Y.; Wang, X. L.; Feng, Z. C.; Li, C. Relation between the photocatalytic and photoelectrocatalytic performance for the particulate semiconductor-based photoconversion systems with surface phase junction structure. J. Phys. Chem. C 2015, 119, 22460-22464.

186

Li, A. L.; Wang, Z. L.; Yin, H.; Wang, S. Y.; Yan, P. L.; Huang, B. K.; Wang, X. L.; Li, R. G.; Zong, X.; Han, H. X. et al. Understanding the anatase-rutile phase junction in charge separation and transfer in a TiO2 electrode for photoelectrochemical water splitting. Chem. Sci. 2016, 7, 6076-6082.

187

Liu, M. C.; Jing, D. W.; Zhou, Z. H.; Guo, L. J. Twin-induced one- dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nat. Commun. 2013, 4, 2278.

188

Liu, M. C.; Wang, L. Z.; Lu, G. Q.; Yao, X. D.; Guo, L. J. Twins in Cd1-xZnxS solid solution: Highly efficient photocatalyst for hydrogen generation from water. Energy Environ. Sci. 2011, 4, 1372-1378.

189

He, K.; Wang, M.; Guo, L. J. Novel-CdS-nanorod with stacking fault structures: Preparation and properties of visible-light-driven photocatalytic hydrogen production from water. Chem. Eng. J. 2015, 279, 747-756.

190

Du, H.; Liang, K.; Yuan, C. Z.; Guo, H. L.; Zhou, X.; Jiang, Y. F.; Xu, A. W. Bare Cd1-xZnxS ZB/WZ heterophase nanojunctions for visible light photocatalytic hydrogen production with high efficiency. ACS Appl. Mater. Interfaces 2016, 8, 24550-24558.

191

Dong, W. Y.; Liu, Y. T.; Zeng, G. M.; Zhang, S. Q.; Cai, T.; Yuan, J. L.; Chen, H.; Gao, J.; Liu, C. B. Regionalized and vectorial charges transferring of Cd1-xZnxS twin nanocrystal homojunctions for visible-light driven photocatalytic applications. J. Colloid Interface Sci. 2018, 518, 156-164.

192

Murdoch, M.; Waterhouse, G. I. N.; Nadeem, M. A.; Metson, J. B.; Keane, M. A.; Howe, R. F.; Llorca, J.; Idriss, H. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat. Chem. 2011, 3, 489-492.

193

Li, H. H.; Yin, S.; Wang, Y. H.; Sato, T. Effect of phase structures of TiO2-xNy on the photocatalytic activity of CaAl2O4: (Eu, Nd)-coupled TiO2-xNy. J. Catal. 2012, 286, 273-278.

194

Wong, T. J.; Lim, F. J.; Gao, M. M.; Lee, G. H.; Ho, G. W. Photocatalytic H2 production of composite one-dimensional TiO2 nanostructures of different morphological structures and crystal phases with graphene. Catal. Sci. Technol. 2013, 3, 1086-1093.

195

Réti, B.; Major, Z.; Szarka, D.; Boldizsár, T.; Horváth, E.; Magrez, A.; Forró, L.; Dombi, A.; Hernádi, K. Influence of TiO2 phase composition on the photocatalytic activity of TiO2/MWCNT composites prepared by combined sol-gel/hydrothermal method. J. Mol. Catal. A: Chem. 2016, 414, 140-147.

196

Tanabe, I.; Ryoki, T.; Ozaki, Y. Significant enhancement of photocatalytic activity of rutile TiO2 compared with anatase TiO2 upon Pt nanoparticle deposition studied by far-ultraviolet spectroscopy. Phys. Chem. Chem. Phys. 2014, 16, 7749-7753.

197

Song, C. K.; Baek, J.; Kim, T. Y.; Yu, S.; Han, J. W.; Yi, J. Exploring crystal phase and morphology in the TiO2 supporting materials used for visible-light driven plasmonic photocatalyst. Appl. Catal. B: Environ. 2016, 198, 91-99.

198

Zhao, J.; Wang, Y.; Li, Y. X.; Yue, X.; Wang, C. Y. Phase-dependent enhancement for CO2 photocatalytic reduction over CeO2/TiO2 catalysts. Catal. Sci. Technol. 2016, 6, 7967-7975.

199

Bai, S.; Yin, W. J.; Wang, L. L.; Li, Z. Q.; Xiong, Y. J. Surface and interface design in cocatalysts for photocatalytic water splitting and CO2 reduction. RSC Adv. 2016, 6, 57446-57463.

200

Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702-2712.

201

Mahler, B.; Hoepfner, V.; Liao, K.; Ozin, G. A. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: Applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 14121-14127.

202

Chang, K.; Hai, X.; Pang, H.; Zhang, H. B.; Shi, L.; Liu, G. G.; Liu, H. M.; Zhao, G. X.; Li, M.; Ye, J. H. Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv. Mater. 2016, 28, 10033-10041.

203

Bai, S.; Wang, L. M.; Chen, X. Y.; Du, J. T.; Xiong, Y. J. Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 2015, 8, 175-183.

204

Liu, Q.; Li, X. L.; He, Q.; Khalil, A.; Liu, D. B.; Xiang, T.; Wu, X. J.; Song, L. Gram-scale aqueous synthesis of stable few-layered 1T-MoS2: Applications for visible-light-driven photocatalytic hydrogen evolution. Small 2015, 11, 5556-5564.

205

Wu, C. Q.; Fang, Q.; Liu, Q.; Liu, D. B.; Wang, C. D.; Xiang, T.; Khalil, A.; Chen, S. M.; Song, L. Engineering interfacial charge-transfer by phase transition realizing enhanced photocatalytic hydrogen evolution activity. Inorg. Chem. Front. 2017, 4, 663-667.

206

Cheng, H. F.; Yang, N. L.; Lu, Q. P.; Zhang, Z. C.; Zhang, H. Syntheses and properties of metal nanomaterials with novel crystal phases. Adv. Mater. 2018, 30, 1707189.

207

Ye, F.; Wang, F.; Meng, C. C.; Bai, L. J.; Li, J. Y.; Xing, P. X.; Teng, B. T.; Zhao, L. H.; Bai, S. Crystalline phase engineering on cocatalysts: A promising approach to enhancement on photocatalytic conversion of carbon dioxide to fuels. Appl. Catal. B: Environ. 2018, 230, 145-153.

208

Cai, X. T.; Wang, A.; Wang, J. W.; Wang, R. X.; Zhong, S. X.; Zhao, Y. L.; Wu, L. J.; Chen, J. R.; Bai, S. Order engineering on the lattice of intermetallic PdCu co-catalysts for boosting the photocatalytic conversion of CO2 into CH4. J. Mater. Chem. A 2018, 6, 17444-17456.

209

Zhu, Y. Z.; Gao, C.; Bai, S.; Chen, S. M.; Long, R.; Song, L.; Li, Z. Q.; Xiong, Y. J. Hydriding Pd cocatalysts: An approach to giant enhancement on photocatalytic CO2 reduction into CH4. Nano Res. 2017, 10, 3396-3406.

210

Priebe, J. B.; Radnik, J.; Lennox, A. J. J.; Pohl, M. M.; Karnahl, M.; Hollmann, D.; Grabow, K.; Bentrup, U.; Junge, H.; Beller, M. et al. Solar hydrogen production by plasmonic Au-TiO2 catalysts: Impact of synthesis protocol and TiO2 phase on charge transfer efficiency and H2 evolution rates. ACS Catal. 2015, 5, 2137-2148.

211

Wen, Y.; Liu, B. T.; Zeng, W.; Wang, Y. H. Plasmonic photocatalysis properties of Au nanoparticles precipitated anatase/rutile mixed TiO2 nanotubes. Nanoscale 2013, 5, 9739-9746.

212

Zhou, J.; Tian, G. H.; Chen, Y. J.; Wang, J. Q.; Cao, X. R.; Shi, Y. H.; Pan, K.; Fu, H. G. Synthesis of hierarchical TiO2 nanoflower with anatase-rutile heterojunction as Ag support for efficient visible-light photocatalytic activity. Dalton Trans. 2013, 42, 11242-11251.

213

Tay, Q.; Wang, X. H.; Zhao, X.; Hong, J. D.; Zhang, Q.; Xu, R.; Chen, Z. Enhanced visible light hydrogen production via a multiple heterojunction structure with defect-engineered g-C3N4 and two-phase anatase/brookite TiO2. J. Catal. 2016, 342, 55-62.

214

Pan, Y. X.; Zhou, T. H.; Han, J. Y.; Hong, J. D.; Wang, Y. B.; Zhang, W.; Xu, R. CdS quantum dots and tungsten carbide supported on anatase-rutile composite TiO2 for highly efficient visible-light-driven photocatalytic H2 evolution from water. Catal. Sci. Technol. 2016, 6, 2206-2213.

215

Pathak, P.; Israel, L. H.; Pereira, E. J. M.; Subramanian, V. R. Effects of carbon allotrope interface on the photoactivity of rutile one-dimensional (1D) TiO2 coated with anatase TiO2 and sensitized with CdS nanocrystals. ACS Appl. Mater. Interfaces 2016, 8, 13400-13409.

216

Boppella, R.; Basak, P.; Manorama, S. V. Viable method for the synthesis of biphasic TiO2 nanocrystals with tunable phase composition and enabled visible-light photocatalytic performance. ACS Appl. Mater. Interfaces 2012, 4, 1239-1246.

217

Ma, Y.; Xu, Q.; Zong, X.; Wang, D. E.; Wu, G. P.; Wang, X.; Li, C. Photocatalytic H2 production on Pt/TiO2-SO42- with tuned surface-phase structures: Enhancing activity and reducing CO formation. Energy Environ. Sci. 2012, 5, 6345-6351.

218

Xu, Q.; Ma, Y.; Zhang, J.; Wang, X. L.; Feng, Z. C.; Li, C. Enhancing hydrogen production activity and suppressing CO formation from photocatalytic biomass reforming on Pt/TiO2 by optimizing anatase- rutile phase structure. J. Catal. 2011, 278, 329-335.

219

Li, M. L.; Wang, M.; Zhu, L. F.; Li, Y. M.; Yan, Z.; Shen, Z. Q.; Cao, X. B. Facile microwave assisted synthesis of N-rich carbon quantum dots/dual-phase TiO2 heterostructured nanocomposites with high activity in CO2 photoreduction. Appl. Catal. B: Environ. 2018, 231, 269-276.

220

Tay, Q.; Chen, Z. Effective charge separation towards enhanced photocatalytic activity via compositing reduced graphene oxide with two-phase anatase/brookite TiO2. Int. J. Hydrogen Energy 2016, 41, 10590-10597.

221

Bai, Y.; Li, W.; Liu, C.; Yang, Z. H.; Feng, X.; Lu, X. H.; Chan, K. Y. Stability of Pt nanoparticles and enhanced photocatalytic performance in mesoporous Pt-(anatase/TiO2(B)) nanoarchitecture. J. Mater. Chem. 2009, 19, 7055-7061.

222

Silva, L. A.; Ryu, S. Y.; Choi, J.; Choi, W.; Hoffmann, M. R. Photocatalytic hydrogen production with visible light over Pt-interlinked hybrid composites of cubic-phase and hexagonal-phase CdS. J. Phys. Chem. C 2008, 112, 12069-12073.

223

Liu, M. C.; Chen, Y. B.; Su, J. Z.; Shi, J. W.; Wang, X. X.; Guo, L. J. Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nat. Energy 2016, 1, 16151.

224

Song, J. G.; Zhao, H. T.; Sun, R. R.; Li, X. Y.; Sun, D. J. An efficient hydrogen evolution catalyst composed of palladium phosphorous sulphide (PdP~0.33S~1.67) and twin nanocrystal Zn0.5Cd0.5S solid solution with both homo- and hetero-junctions. Energy Environ. Sci. 2017, 10, 225-235.

225

Xiao, F. X.; Miao, J. W.; Liu, B. Self-assembly of aligned rutile@anatase TiO2 nanorod@CdS quantum dots ternary core-shell heterostructure: Cascade electron transfer by interfacial design. Mater. Horiz. 2014, 1, 259-263.

226

Ziarati, A.; Badiei, A.; Ziarani, G. M.; Eskandarloo, H. Simultaneous photocatalytic and catalytic activity of p-n junction NiO@anatase/rutile-TiO2 as a noble-metal free reusable nanoparticle for synthesis of organic compounds. Catal. Commun. 2017, 95, 77-82.

227

Yang, J. S.; Wu, J. J. Toward eco-friendly and highly efficient solar water splitting using In2S3/anatase/rutile TiO2 dual-staggered-heterojunction nanodendrite array photoanode. ACS Appl. Mater. Interfaces 2018, 10, 3714-3722.

228

Zhao, W. R.; Zhang, M.; Ai, Z. Y.; Yang, Y. A.; Xi, H. P.; Shi, Q. M.; Xu, X. H.; Shi, H. X. Synthesis, characterization, and photocatalytic properties of SnO2/rutile TiO2/anatase TiO2 heterojunctions modified by Pt. J. Phys. Chem. C 2014, 118, 23117-23125.

229

Zhou, X.; Wu, J.; Li, Q. F.; Qi, Y. F.; Ji, Z.; He, P.; Qi, X. M.; Sheng, P. F.; Li, Q. W.; Ren, J. X. Improved electron-hole separation and migration in V2O5/rutile-anatase photocatalyst system with homo-hetero junctions and its enhanced photocatalytic performance. Chem. Eng. J. 2017, 330, 294-308.

230

Guo, Y.; Wang, P. F.; Qian, J.; Hou, J.; Ao, Y. H.; Wang, C. Construction of a composite photocatalyst with significantly enhanced photocatalytic performance through combination of homo-junction with hetero-junction. Catal. Sci. Technol. 2018, 8, 486-498.

231

Liu, H. Y.; Wu, R.; Tian, L.; Kong, Y. Y.; Sun, Y. F. Synergetic photocatalytic effect between 1 T@2H-MoS2 and plasmon resonance induced by Ag quantum dots. Nanotechnology 2018, 29, 285402.

232

Yu, Y.; Wen, W.; Qian, X. Y.; Liu, J. B.; Wu, J. M. UV and visible light photocatalytic activity of Au/TiO2 nanoforests with Anatase/Rutile phase junctions and controlled Au locations. Sci. Rep. 2017, 7, 41253.

233

Xu, F. Y.; Xiao, W.; Cheng, B.; Yu, J. G. Direct Z-scheme anatase/rutile bi-phase nanocomposite TiO2 nanofiber photocatalyst with enhanced photocatalytic H2-production activity. Int. J. Hydrogen Energy 2014, 39, 15394-15402.

234

Zhou, P.; Yu, J. G.; Jaroniec, M. All-solid-state Z-Scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920-4935.

235

Li, H. J.; Tu, W. G.; Zhou, Y.; Zou, Z. G. Z-Scheme photocatalytic systems for promoting photocatalytic performance: Recent progress and future challenges. Adv. Sci. 2016, 3, 1500389.

236

Li, Y. R.; Li, L. L.; Gong, Y. Q.; Bai, S.; Ju, H. X.; Wang, C. M.; Xu, Q.; Zhu, J. F.; Jiang, J.; Xiong, Y. J. Towards full-spectrum photocatalysis: Achieving a Z-scheme between Ag2S and TiO2 by engineering energy band alignment with interfacial Ag. Nano Res. 2015, 8, 3621-3629.

237

Yan, Y.; Wang, C.; Yan, X.; Xiao, L. S.; He, J. H.; Gu, W.; Shi, W. D. Graphene acting as surface phase junction in anatase-graphene-rutile heterojunction photocatalysts for H2 production from water splitting. J. Phys. Chem. C 2014, 118, 23519-23526.

238

Zhang, N.; Jalil, A.; Wu, D. X.; Chen, S. M.; Liu, Y. F.; Gao, C.; Ye, W.; Qi, Z. M.; Ju, H. X.; Wang, C. M. et al. Refining defect states in W18O49 by Mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc. 2018, 140, 9434-9443.

239

Zhao, Y. F.; Zhao, Y. X.; Waterhouse, G. I. N.; Zheng, L. R.; Cao, X. Z.; Teng, F.; Wu, L. Z.; Tung C. H.; O'Hare D.; Zhang, T. R. Layered- double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation. Adv. Mater. 2017, 29, 1703828.

240

Li, M. Q.; Huang, H.; Low, J.; Gao, C.; Long, R.; Xiong, Y. J. Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction. Small Methods, in press, DOI: 10.1002/smtd.201800388.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 October 2018
Revised: 23 November 2018
Accepted: 09 December 2018
Published: 22 December 2018
Issue date: September 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was financially supported in part by the National Key R & D Program of China (No. 2017YFA0207301), the National Natural Science Foundation of China (Nos. 21725102, 21471141, 21603191, and U1532135), CAS Key Research Program of Frontier Sciences (No. QYZDB-SSW-SLH018), CAS Interdisciplinary Innovation Team, and Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (No. 2016FXCX003).

Return