Journal Home > Volume 12 , Issue 7

Controlling postprandial glucose levels for diabetic patients is critical to achieve the tight glycemic control that decreases the risk for developing long-term micro- and macrovascular complications. Herein, we report a glucose-responsive oral insulin delivery system based on Fc receptor (FcRn)-targeted liposomes with glucose-sensitive hyaluronic acid (HA) shell for postprandial glycemic regulation. After oral administration, the HA shell can quickly detach in the presence of increasing intestinal glucose concentration due to the competitive binding of glucose with the phenylboronic acid groups conjugated with HA. The exposed Fc groups on the surface of liposomes then facilitate enhanced intestinal absorption in an FcRn-mediated transport pathway. In vivo studies on chemically-induced type 1 diabetic mice show this oral glucose-responsive delivery approach can effectively reduce postprandial blood glucose excursions. This work is the first demonstration of an oral insulin delivery system directly triggered by increasing postprandial glucose concentrations in the intestine to provide an on-demand insulin release with ease of administration.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Glucose-responsive oral insulin delivery for postprandial glycemic regulation

Show Author's information Jicheng Yu1Yuqi Zhang1Jinqiang Wang1,2Di Wen1,2Anna R. Kahkoska3John B. Buse3Zhen Gu1,2,3,4( )
Joint Department of Biomedical Engineering,University of North Carolina at Chapel Hill and North Carolina State University,Raleigh, NC,27695,USA;
Department of Bioengineering,University of California,Los Angeles, Los Angeles, CA,90095,USA;
Department of Medicine,University of North Carolina at Chapel Hill,Chapel Hill, NC,27599,USA;
California NanoSystems Institute (CNSI), Jonsson Comprehensive Cancer Center, Center for Minimally Invasive Therapeutics,University of California,Los Angeles, Los Angeles, CA,90095,USA;

Abstract

Controlling postprandial glucose levels for diabetic patients is critical to achieve the tight glycemic control that decreases the risk for developing long-term micro- and macrovascular complications. Herein, we report a glucose-responsive oral insulin delivery system based on Fc receptor (FcRn)-targeted liposomes with glucose-sensitive hyaluronic acid (HA) shell for postprandial glycemic regulation. After oral administration, the HA shell can quickly detach in the presence of increasing intestinal glucose concentration due to the competitive binding of glucose with the phenylboronic acid groups conjugated with HA. The exposed Fc groups on the surface of liposomes then facilitate enhanced intestinal absorption in an FcRn-mediated transport pathway. In vivo studies on chemically-induced type 1 diabetic mice show this oral glucose-responsive delivery approach can effectively reduce postprandial blood glucose excursions. This work is the first demonstration of an oral insulin delivery system directly triggered by increasing postprandial glucose concentrations in the intestine to provide an on-demand insulin release with ease of administration.

Keywords: drug delivery, nanomedicine, diabetes, glucose-responsive, insulin

References(41)

1

Mo, R.; Jiang, T. Y.; Di, J.; Tai, W. Y.; Gu, Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem. Soc. Rev. 2014, 43, 3595–3629.

2

Veiseh, O.; Tang, B. C.; Whitehead, K. A.; Anderson, D. G.; Langer, R. Managing diabetes with nanomedicine: Challenges and opportunities. Nat. Rev. Drug Discov. 2015, 14, 45–57.

3

Owens, D. R.; Zinman, B.; Bolli, G. B. Insulins today and beyond. Lancet 2001, 358, 739–746.

4

Owens, D. R. New horizons—Alternative routes for insulin therapy. Nat. Rev. Drug Discov. 2002, 1, 529–540.

5

Bratlie, K. M.; York, R. L.; Invernale, M. A.; Langer, R.; Anderson, D. G. Materials for diabetes therapeutics. Adv. Healthc. Mater. 2012, 1, 267–284.

6

Ravaine, V.; Ancla, C.; Catargi, B. Chemically controlled closed-loop insulin delivery. J. Control. Release 2008, 132, 2–11.

7

Heinemann, L.; Pfutzner, A.; Heise, T. Alternative routes of administration as an approach to improve insulin therapy: Update on dermal, oral, nasal and pulmonary insulin delivery. Curr. Pharm. Des. 2001, 7, 1327–1351.

8

Owens, D. R.; Zinman, B.; Bolli, G. Alternative routes of insulin delivery. Diabet. Med. 2003, 20, 886–898.

9

Carino, G. P.; Mathiowitz, E. Oral insulin delivery. Adv. Drug Deliv. Rev. 1999, 35, 249–257.

10

Cefalu, W. T. Concept, strategies, and feasibility of noninvasive insulin delivery. Diabetes Care 2004, 27, 239–246.

11

Yu, J. C.; Zhang, Y. Q.; Ye, Y. Q.; DiSanto, R.; Sun, W. J.; Ranson, D.; Ligler, F. S.; Buse, J. B.; Gu, Z. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl. Acad. Sci. USA 2015, 112, 8260–8265.

12

Yu, J. C.; Zhang, Y. Q.; Bomba, H.; Gu, Z. Stimuli-responsive delivery of therapeutics for diabetes treatment. Bioeng. Transl. Med. 2016, 1, 323–337.

13

Makino, K.; Mack, E. J.; Okano, T.; Kim, S. W. A microcapsule self-regulating delivery system for insulin. J. Control. Release 1990, 12, 235–239.

14

Iyer, H.; Khedkar, A.; Verma, M. Oral insulin—A review of current status. Diabetes Obes. Metab. 2010, 12, 179–185.

15

Mitragotri, S.; Burke, P. A.; Langer, R. Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies. Nat. Rev. Drug Discov. 2014, 13, 655–672.

16

Moroz, E.; Matoori, S.; Leroux, J. C. Oral delivery of macromolecular drugs: Where we are after almost 100 years of attempts. Adv. Drug Deliv. Rev. 2016, 101, 108–121.

17

Lowman, A. M.; Morishita, M.; Kajita, M.; Nagai, T.; Peppas, N. A. Oral delivery of insulin using pH-responsive complexation gels. J. Pharm. Sci. 1999, 88, 933–937.

18

Sonaje, K.; Lin, K. J.; Wang, J. J.; Mi, F. L.; Chen, C. T.; Juang, J. H.; Sung, H. W. Self-assembled pH-sensitive nanoparticles: A platform for oral delivery of protein drugs. Adv. Funct. Mater. 2010, 20, 3695–3700.

19

Yin, L. C.; Ding, J. Y.; He, C. B.; Cui, L. M.; Tang, C.; Yin, C. H. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials 2009, 30, 5691–5700.

20

Pridgen, E. M.; Alexis, F.; Kuo, T. T.; Levy-Nissenbaum, E.; Karnik, R.; Blumberg, R. S.; Langer, R.; Farokhzad, O. C. Transepithelial transport of Fc-targeted nanoparticles by the neonatal fc receptor for oral delivery. Sci. Transl. Med. 2013, 5, 213ra167.

21

Raghavan, M.; Gastinel, L. N.; Bjorkman, P. J. The class I major histocompatibility complex related Fc receptor shows pH-dependent stability differences correlating with immunoglobulin binding and release. Biochemistry 1993, 32, 8654–8660.

22

Qin, J. J.; Wang, W.; Sarkar, S.; Zhang, R. W. Oral delivery of anti-MDM2 inhibitor SP141-loaded FcRn-targeted nanoparticles to treat breast cancer and metastasis. J. Control. Release 2016, 237, 101–114.

23

He, W. Z.; Ladinsky, M. S.; Huey-Tubman, K. E.; Jensen, G. J.; McIntosh, J. R.; Björkman, P. J. FcRn-mediated antibody transport across epithelial cells revealed by electron tomography. Nature 2008, 455, 542–546.

24

Shi, Y. N.; Sun, X. F.; Zhang, L. P.; Sun, K. X.; Li, K. K.; Li, Y. X.; Zhang, Q. Fc-modified exenatide-loaded nanoparticles for oral delivery to improve hypoglycemic effects in mice. Sci. Rep. 2018, 8, 726.

25

Deng, C. C.; Brooks, W. L. A.; Abboud, K. A.; Sumerlin, B. S. Boronic acid-based hydrogels undergo self-healing at neutral and acidic pH. ACS Macro Lett. 2015, 4, 220–224.

26

Brooks, W. L. A.; Sumerlin, B. S. Synthesis and applications of boronic acid-containing polymers: From materials to medicine. Chem. Rev. 2015, 116, 1375–1397.

27

Kataoka, K.; Miyazaki, H.; Bunya, M.; Okano, T.; Sakurai, Y. Totally synthetic polymer gels responding to external glucose concentration: Their preparation and application to on–off regulation of insulin release. J. Am. Chem. Soc. 1998, 120, 12694–12695.

28

Chou, D. H. C.; Webber, M. J.; Tang, B. C.; Lin, A. B.; Thapa, L. S.; Deng, D.; Truong, J. V.; Cortinas, A. B.; Langer, R.; Anderson, D. G. Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Proc. Natl. Acad. Sci. USA 2015, 112, 2401–2406.

29

Mo, R.; Jiang, T. Y.; Gu, Z. Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery. Angew. Chem., Int. Ed. 2014, 53, 5815–5820.

30

Zhan, C. Y.; Wang, W. P.; Santamaria, C.; Wang, B.; Rwei, A.; Timko, B. P.; Kohane, D. S. Ultrasensitive phototriggered local anesthesia. Nano Lett. 2017, 17, 660–665.

31

Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2016, 2, 16075.

32

Jin, Y.; Song, Y. P.; Zhu, X.; Zhou, D.; Chen, C. H.; Zhang, Z. R.; Huang, Y. Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport. Biomaterials 2012, 33, 1573–1582.

33

Li, Y. H.; Wen, S. P.; Kota, B. P.; Peng, G.; Li, G. Q.; Yamahara, J.; Roufogalis, B. D. Punica granatum flower extract, a potent α-glucosidase inhibitor, improves postprandial hyperglycemia in Zucker diabetic fatty rats. J. Ethnopharmacol. 2005, 99, 239–244.

34

Kim, J. H.; Kang, M. J.; Choi, H. N.; Jeong, S. M.; Lee, Y. M.; Kim, J. I. Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus. Nutr. Res. Pract. 2011, 5, 107–111.

35

Bell, K. J.; King, B. R.; Shafat, A.; Smart, C. E. The relationship between carbohydrate and the mealtime insulin dose in type 1 diabetes. J. Diabetes Complications 2015, 29, 1323–1329.

36

Wolever, T. M.; Bolognesi, C. Source and amount of carbohydrate affect postprandial glucose and insulin in normal subjects. J. Nutr. 1996, 126, 2798–2806.

37

American Diabetes Association, A. D. Standards of medical care in diabetes—2017: Summary of revisions. Diabetes Care 2017, 40, S4–S5.

38

Roopenian, D. C.; Akilesh, S. FcRn: The neonatal Fc receptor comes of age. Nat. Rev. Immunol. 2007, 7, 715–725.

39

Wang, Y. F.; Kohane, D. S. External triggering and triggered targeting strategies for drug delivery. Nat. Rev. Mater. 2017, 2, 17020.

40

Di, J.; Yu, J. C.; Ye, Y. Q.; Ranson, D.; Jindal, A.; Gu, Z. Engineering synthetic insulin-secreting cells using hyaluronic acid microgels integrated with glucose-responsive nanoparticles. Cell. Mol. Bioeng. 2015, 8, 445–454.

41

Zhang, Y. Q.; Yu, J. C.; Wang, J. Q.; Hanne, N. J.; Cui, Z.; Qian, C. G.; Wang, C.; Xin, H. L.; Cole, J. H.; Gallippi, C. M. et al. Thrombin-responsive transcutaneous patch for auto-anticoagulant regulation. Adv. Mater. 2017, 29, 1604043.

File
12274_2018_2264_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 October 2018
Revised: 03 December 2018
Accepted: 04 December 2018
Published: 18 December 2018
Issue date: July 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the grants from NC TraCS, NIH's Clinical and Translational Science Awards (CTSA, NIH grant 1UL1TR001111) at UNC-CH and Sloan Research Fellowship. We acknowledge the use of the Analytical Instrumentation Facility (AIF) at NC State, which is supported by the State of North Carolina and the National Science Foundation (NSF).

Return