Journal Home > Volume 12 , Issue 3

Ab initio and classical molecular dynamics simulations show that water can flow through graphdiyne—an experimentally fabricated graphene-like membrane with highly dense (2.4 × 1018 pores/m2), uniformly ordered, subnanometer pores (incircle diameter 0.57 nm and van der Waals area 0.06 nm2). Water transports through subnanopores via a chemical-reaction-like activated process. The activated water flow can be precisely controlled through fine adjustment of working temperature and pressure. In contrast to a linear dependence on pressure for conventional membranes, here pressure directly modulates the activation energy, leading to a nonlinear water flow as a function of pressure. Consequently, high flux (1.6 L/Day/cm2/MPa) with 100% salt rejection efficiency is achieved at reasonable temperatures and pressures, suggesting graphdiyne can serve as an excellent membrane for water desalination. We further show that to get through subnanopores water molecule must break redundant hydrogen bonds to form a two-hydrogen-bond transient structure. Our study unveils the principles and atomistic mechanism for water transport through pores in ultimate size limit, and offers new insights on water permeation through nanochannels, design of molecule sieving and nanofluidic manipulation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Water transport through subnanopores in the ultimate size limit: Mechanism from molecular dynamics

Show Author's information Jiyu Xu1,2,§Chongqin Zhu3,§Yifei Wang1,2,§Hui Li1,4,§Yongfeng Huang1,2Yutian Shen1,2Joseph S. Francisco3Xiao Cheng Zeng3( )Sheng Meng1,2( )
Institute of Physics,Chinese Academy of Sciences,Beijing,100190,China;
School of Physical Sciences,University of Chinese Academy of Sciences,Beijing,100049,China;
Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
Beijing Advanced Innovation Center for Soft Matter Science and Engineering,Beijing University of Chemical Technology,Beijing,100029,China;

§ Jiyu Xu, Chongqin Zhu, Yifei Wang, and Hui Li contributed equally to this work.

Abstract

Ab initio and classical molecular dynamics simulations show that water can flow through graphdiyne—an experimentally fabricated graphene-like membrane with highly dense (2.4 × 1018 pores/m2), uniformly ordered, subnanometer pores (incircle diameter 0.57 nm and van der Waals area 0.06 nm2). Water transports through subnanopores via a chemical-reaction-like activated process. The activated water flow can be precisely controlled through fine adjustment of working temperature and pressure. In contrast to a linear dependence on pressure for conventional membranes, here pressure directly modulates the activation energy, leading to a nonlinear water flow as a function of pressure. Consequently, high flux (1.6 L/Day/cm2/MPa) with 100% salt rejection efficiency is achieved at reasonable temperatures and pressures, suggesting graphdiyne can serve as an excellent membrane for water desalination. We further show that to get through subnanopores water molecule must break redundant hydrogen bonds to form a two-hydrogen-bond transient structure. Our study unveils the principles and atomistic mechanism for water transport through pores in ultimate size limit, and offers new insights on water permeation through nanochannels, design of molecule sieving and nanofluidic manipulation.

Keywords: molecular dynamics, water transport, graphdiyne, subnanopore, desalination

References(60)

1

Buelke, C.; Alshami, A.; Casler, J.; Lewis, J.; Al-Sayaghi, M.; Hickner, M. A. Graphene oxide membranes for enhancing water purification in terrestrial and space-born applications: State of the art. Desalination 2018, 448, 1138lin.

2

Pendergast, M. M.; Hoek, E. M. V. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 2011, 4, 1946-1971.

3

Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Mariñas, B. J.; Mayes, A. M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301-310.

4

Elimelech, M.; Phillip, W. A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712-717.

5

Post, V. E. A.; Groen, J.; Kooi, H.; Person, M.; Ge, S. M.; Edmunds, W. M. Offshore fresh groundwater reserves as a global phenomenon. Nature 2013, 504, 71-78.

6

Yang, L. H.; Gordon, V. D.; Trinkle, D. R.; Schmidt, N. W.; Davis, M. A.; DeVries, C.; Som, A.; Cronan, J. E. Jr.; Tew, G. N.; Wong, G. C. L. Mechanism of a prototypical synthetic membrane-active antimicrobial: Efficient hole-punching via interaction with negative intrinsic curvature lipids. Proc. Natl. Acad. Sci. USA 2008, 105, 20595-20600.

7

García-Fandiño, R.; Sansom, M. S. P. Designing biomimetic pores based on carbon nanotubes. Proc. Natl. Acad. Sci. USA 2012, 109, 6939-6944.

8

Kosztin, I.; Schulten, K. Fluctuation-driven molecular transport through an asymmetric membrane channel. Phys. Rev. Lett. 2004, 93, 238102.

9

Tunuguntla, R. H.; Henley, R. Y.; Yao, Y. C.; Pham, T. A.; Wanunu, M.; Noy, A. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 2017, 357, 792-796.

10

Murata, K.; Mitsuoka, K.; Hirai, T.; Walz, T.; Agre, P.; Heymann, J. B.; Engel, A.; Fujiyoshi, Y. Structural determinants of water permeation through aquaporin-1. Nature 2000, 407, 599-605.

11

Tajkhorshid, E.; Nollert, P.; Jensen, M. Ø.; Miercke, L. J. W.; O'connell, J.; Stroud, R. M.; Schulten, K. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 2002, 296, 525-530.

12

Horner, A.; Zocher, F.; Preiner, J.; Ollinger, N.; Siligan, C.; Akimov, S. A.; Pohl, P. The mobility of single-file water molecules is governed by the number of H-bonds they may form with channel-lining residues. Sci. Adv. 2015, 1, e1400083.

13

Kidambi, P. R.; Boutilier, M. S. H.; Wang, L. D.; Jang, D.; Kim, J.; Karnik, R. Selective nanoscale mass transport across atomically thin single crystalline graphene membranes. Adv. Mater. 2017, 29, 1605896.

14

Zhu, C. Q.; Li, H.; Meng, S. Transport behavior of water molecules through two-dimensional nanopores. J. Chem. Phys. 2014, 141, 18C528.

15

Suk, M. E.; Aluru, N. R. Water transport through ultrathin graphene. J. Phys. Chem. Lett. 2010, 1, 1590-1594.

16

Cohen-Tanugi, D.; Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 2012, 12, 3602-3608.

17

Zhu, C. Q.; Li, H.; Zeng, X. C.; Wang, E. G.; Meng, S. Quantized water transport: Ideal desalination through graphyne-4 membrane. Sci. Rep. 2013, 3, 3163.

18

Kou, J. L.; Zhou, X. Y.; Lu, H. J.; Wu, F. M.; Fan, J. T. Graphyne as the membrane for water desalination. Nanoscale 2014, 6, 1865-1870.

19

Lin, S. C.; Buehler, M. J. Mechanics and molecular filtration performance of graphyne nanoweb membranes for selective water purification. Nanoscale 2013, 5, 11801-11807.

20

Holt, J. K.; Park, H. G.; Wang, Y. M.; Stadermann, M.; Artyukhin, A. B.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 2006, 312, 1034-1037.

21

Thomas, J. A.; McGaughey, A. J. H. Water flow in carbon nanotubes: Transition to subcontinuum transport. Phys. Rev. Lett. 2009, 102, 184502.

22

Qin, X. C.; Yuan, Q. Z.; Zhao, Y. P.; Xie, S. B.; Liu, Z. F. Measurement of the rate of water translocation through carbon nanotubes. Nano Lett. 2011, 11, 2173-2177.

23

Joseph, S.; Aluru, N. Why are carbon nanotubes fast transporters of water? Nano Lett. 2008, 8, 452-458.

24

Striolo, A. The mechanism of water diffusion in narrow carbon nanotubes. Nano Lett. 2006, 6, 633-639.

25

Wang, Y. J.; Li, L. B.; Wei, Y. Y.; Xue, J.; Chen, H.; Ding, L.; Caro, J.; Wang, H. H. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angew. Chem. , Int. Ed. 2017, 56, 8974-8980.

26

Xue, M. M.; Qiu, H.; Guo, W. L. Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers. Nanotechnology 2013, 24, 505720.

27

Surwade, S. P.; Smirnov, S. N.; Vlassiouk, I. V.; Unocic, R. R.; Veith, G. M.; Dai, S.; Mahurin, S. M. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 2015, 10, 459-464.

28

Liu, J.; Shi, G. S.; Guo, P.; Yang, J. R.; Fang, H. P. Blockage of water flow in carbon nanotubes by ions due to interactions between cations and aromatic rings. Phys. Rev. Lett. 2015, 115, 164502.

29

Han, J.; Fu, J. P.; Schoch, R. B. Molecular sieving using nanofilters: Past, present and future. Lab Chip 2008, 8, 23-33.

30

Wan, R. Z.; Li, J. Y.; Lu, H. J.; Fang, H. P. Controllable water channel gating of nanometer dimensions. J. Am. Chem. Soc. 2005, 127, 7166-7170.

31

Li, J. Y.; Gong, X. J.; Lu, H. J.; Li, D.; Fang, H. P.; Zhou, R. H. Electrostatic gating of a nanometer water channel. Proc. Natl. Acad. Sci. USA 2007, 104, 3687-3692.

32

Gong, X. J.; Li, J. Y.; Zhang, H.; Wan, R. Z.; Lu, H. J.; Wang, S.; Fang, H. P. Enhancement of water permeation across a nanochannel by the structure outside the channel. Phys. Rev. Lett. 2008, 101, 257801.

33

Li, Y. J.; Xu, L.; Liu, H. B.; Li, Y. L. Graphdiyne and graphyne: From theoretical predictions to practical construction. Chem. Soc. Rev. 2014, 43, 2572-2586.

34

Zhang, S. L.; Liu, H. B.; Huang, C. S.; Cui, G. L.; Li, Y. L. Bulk graphdiyne powder applied for highly efficient lithium storage. Chem. Commun. 2015, 51, 1834-1837.

35

Zhang, S. L.; Du, H. P.; He, J. J.; Huang, C. S.; Liu, H. B.; Cui, G. L.; Li, Y. L. Nitrogen-doped graphdiyne applied for lithium-ion storage. ACS Appl. Mater. Interfaces 2016, 8, 8467-8473.

36

Wang, S.; Yi, L. X.; Halpert, J. E.; Lai, X.Y.; Liu, Y. Y.; Cao, H. B.; Yu, R. B.; Wang, D.; Li, Y. L. A novel and highly efficient photocatalyst based on P25-graphdiyne nanocomposite. Small 2012, 8, 265-271.

37

Cranford, S. W.; Buehler, M. J. Selective hydrogen purification through graphdiyne under ambient temperature and pressure. Nanoscale 2012, 4, 4587-4593.

38

Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256-3258.

39

Qian, X. M.; Ning, Z.Y.; Li, Y. L.; Liu, H. B.; Ouyang, C. B.; Chen, Q.; Li, Y. J. Construction of graphdiyne nanowires with high-conductivity and mobility. Dalton Trans. 2012, 41, 730-733.

40

Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J. Am. Chem. Soc. 2017, 139, 3145-3152.

41

Gao, X.; Li, J.; Du, R.; Zhou, J. Y.; Huang, M. Y.; Liu, R.; Li, J.; Xie, Z. Q.; Wu, L. Z.; Liu, Z. F. et al. Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell. Adv. Mater. 2017, 29, 1605308.

42

Bartolomei, M.; Carmona-Novillo, E.; Hernández, M. I.; Campos-Martínez, J.; Pirani, F.; Giorgi, G.; Yamashita, K. Penetration barrier of water through graphynes' pores: First-principles predictions and force field optimization. J. Phys. Chem. Lett. 2014, 5, 751-755.

43

Yuan, Z.; Govind Rajan, A.; Misra, R. P.; Drahushuk, L. W.; Agrawal, K. V.; Strano, M. S.; Blankschtein, D. Mechanism and prediction of gas permeation through sub-nanometer graphene pores: Comparison of theory and simulation. ACS Nano 2017, 118, 7974-7987.

44

VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Quickstep: Fast and accurate density functional calculations using a mixed gaussian and plane waves approach. Comput. Phys. Commun. 2005, 167, 103-128.

45

Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098-3100.

46

Lee, C.; Yang, W.T.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785-789.

47

Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 1996, 54, 1703-1710.

48

Hartwigsen, C.; Gœdecker, S.; Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 1998, 58, 3641-3662.

49

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

50

Yoo, S.; Xantheas, S. S. Communication: The effect of dispersion corrections on the melting temperature of liquid water. J. Chem. Phys. 2011, 134, 121105.

51

Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M. R.; Smith, J. C.; Kasson, P. M.; van der Spoel, D. et al. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013, 29, 845-854.

52

Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269-6271.

53

Darden, T.; York, D.; Pedersen, L. Particle mesh ewald: An N⋅log(N) method for ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089-10092.

54

Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684-3690.

55

Sanz, E.; Vega, C.; Abascal, J. L. F.; MacDowell, L. G. Phase diagram of water from computer simulation. Phys. Rev. Lett. 2004, 92, 255701.

56

Li, M. Y.; Zhang, Y. M.; Jiang, Y. L.; Zhang, Y.; Wang, Y. M.; Zhou, H. M. Mechanical properties of γ-graphyne nanotubes. RSC Adv. 2018, 8, 15659-15666.

57

Ajori, S.; Ansari, R.; Mirnezhad, M. Mechanical properties of defective γ-graphyne using molecular dynamics simulations. Mater. Sci. Eng. : A 2013, 561, 34-39.

58

Cohen-Tanugi, D.; Grossman, J. C. Mechanical strength of nanoporous graphene as a desalination membrane. Nano Lett. 2014, 14, 6171-6178.

59

Kopec, W.; Köpfer, D. A.; Vickery, O. N.; Bondarenko, A. S.; Jansen, T. L. C.; de Groot, B. L.; Zachariae, U. Direct knock-on of desolvated ions governs strict ion selectivity in K+ channels. Nat. Chem. 2018, 10, 813-820.

60

Zhang, H. C.; Hou, J.; Hu, Y. X.; Wang, P. Y.; Ou, R. W.; Jiang, L.; Liu, J. Z.; Freeman, B. D.; Hill, A. J.; Wang, H. T. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci. Adv. 2018, 4, eaaq0066.

File
12274_2018_2258_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 September 2018
Revised: 02 November 2018
Accepted: 26 November 2018
Published: 06 December 2018
Issue date: March 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

We acknowledge financial support from Ministry of Science and Technology (No. 2016YFA0300902), the National Natural Science Foundation of China (Nos. 11474328 and 11290164) and Chinese Academy of Sciences (No. XDB070301).

Return