Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A CMOS compatible process is presented in order to grow self-catalyzed InAs nanowires on silicon by molecular beam epitaxy. The crucial step of this process is a new in-situ surface preparation under hydrogen (gas or plasma) during the substrate degassing combined with an in-situ arsenic annealing prior to growth. Morphological and structural characterizations of the InAs nanowires are presented and growth mechanisms are discussed in detail. The major influence of surface termination is exposed both experimentally and theoretically using statistics on ensemble of nanowires and density functional theory (DFT) calculations. The differences observed between Molecular Beam Epitaxy (MBE) and Metal Organic Vapor Phase Epitaxy (MOVPE) growth of InAs nanowires can be explained by these different surfaces terminations. The transition between a vapor solid (VS) and a vapor liquid solid (VLS) growth mechanism is presented. Optimized growth conditions lead to very high aspect ratio nanowires (up to 50 nm in diameter and 3 micron in length) without passing the 410 ℃ thermal limit, which makes the whole process CMOS compatible. Overall, our results suggest a new method for surface preparation and a possible tuning of the growth mechanism using different surface terminations.
Tomioka, K.; Yoshimura, M.; Fukui, T. Sub 60 mV/decade switch using an InAs nanowire-Si heterojunction and turn-on voltage shift with a pulsed doping technique. Nano Lett. 2013, 13, 5822-5826.
Kanungo, P. D.; Schmid, H.; Björk, M. T.; Gignac, L. M.; Breslin, C.; Bruley, J.; Bessire, C. D.; Riel, H. Selective area growth of Ⅲ-V nanowires and their heterostructures on silicon in a nanotube template: Towards monolithic integration of nano-devices. Nanotechnology 2013, 24, 225304.
Lee, K. H.; Wang, Y.; Wang, B.; Zhang, L.; Sasangka, W. A.; Goh, S. C.; Bao, S. Y.; Lee, K. E.; Fitzgerald, E. A.; Tan, C. S. Monolithic integration of Si-CMOS and Ⅲ-V-on-Si through direct wafer bonding process. IEEE J. Electron Devices Soc. 2017, 6, 571-578.
Thelander, C.; Agarwal, P.; Brongersma, S.; Eymery, J.; Feiner, L. F.; Forchel, A.; Scheffler, M.; Riess, W.; Ohlsson, B. J.; Gösele, U. et al. Nanowire-based one-dimensional electronics. Mater. Today 2006, 9, 28-35.
Renard, V. T.; Jublot, M.; Gergaud, P.; Cherns, P.; Rouchon, D.; Chabli, A.; Jousseaume, V. Catalyst preparation for CMOS-compatible silicon nanowire synthesis. Nat. Nanotechnol. 2009, 4, 654-657.
Fontcuberta i Morral, A.; Colombo, C.; Abstreiter, G.; Arbiol, J.; Morante, J. R. Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires. Appl. Phys. Lett. 2008, 92, 063112.
Dayeh, S. A.; Yu, E. T.; Wang, D. Surface diffusion and substrate-nanowire adatom exchange in InAs nanowire growth. Nano Lett. 2009, 9, 1967-1972.
Plissard, S.; Larrieu, G.; Wallart, X.; Caroff, P. High yield of self-catalyzed gaas nanowire arrays grown on silicon via gallium droplet positioning. Nanotechnology 2011, 22, 275602.
Koblmüller, G.; Hertenberger, S.; Vizbaras, K.; Bichler, M.; Bao, F.; Zhang, J. P.; Abstreiter, G. Self-induced growth of vertical free-standing InAs nanowires on Si(111) by molecular beam epitaxy. Nanotechnology 2010, 21, 365602.
Caroff, P.; Messing, M. E.; Mattias Borg, B.; Dick, K. A; Deppert, K.; Wernersson, L. E. InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch. Nanotechnology 2009, 20, 495606.
Plissard, S. R.; Slapak, D. R.; Verheijen, M. A.; Hocevar, M.; Immink, G. W. G.; Van Weperen, I.; Nadj-Perge, S.; Frolov, S. M.; Kouwenhoven, L. P.; Bakkers, E. P. A. M. From InSb nanowires to nanocubes: Looking for the sweet spot. Nano Lett. 2012, 12, 1794-1798.
Thelander, C.; Caroff, P.; Plissard, S.; Dick, K. A. Electrical properties of InAs1−xSbx and InSb nanowires grown by molecular beam epitaxy. Appl. Phys. Lett. 2012, 100, 232105.
Cirlin, G. E.; Dubrovskii, V. G.; Samsonenko, Y. B.; Bouravleuv, A. D.; Durose, K.; Proskuryakov, Y. Y.; Mendes, B.; Bowen, L.; Kaliteevski, M. A.; Abram, R. A. et al. Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy. Phys. Rev. B 2010, 82, 035302.
Krogstrup, P.; Popovitz-Biro, R.; Johnson, E.; Madsen, M. H.; Nygård, J.; Shtrikman, H. Structural phase control in self-catalyzed growth of GaAs nanowires on Silicon (111). Nano Lett. 2010, 10, 4475-4482.
Plissard, S.; Dick, K. A; Larrieu, G.; Godey, S.; Addad, A.; Wallart, X.; Caroff, P. Gold-free growth of GaAs nanowires on silicon: Arrays and polytypism. Nanotechnology 2010, 21, 385602.
Priante, G.; Ambrosini, S.; Dubrovskii, V. G.; Franciosi, A.; Rubini, S. Stopping and resuming at will the growth of GaAs nanowires. Cryst. Growth Des. 2013, 13, 3976-3984.
Somaschini, C.; Bietti, S.; Trampert, A.; Jahn, U.; Hauswald, C.; Riechert, H.; Sanguinetti, S.; Geelhaar, L. Control over the number density and diameter of GaAs nanowires on Si(111) mediated by droplet epitaxy. Nano Lett. 2013, 13, 3607-3613.
Munshi, A. M.; Dheeraj, D. L.; Fauske, V. T.; Kim, D. C.; Huh, J.; Reinertsen, J. F.; Ahtapodov, L.; Lee, K. D.; Heidari, B.; van Helvoort, A. T. J. et al. Position-controlled uniform GaAs nanowires on silicon using nanoimprint lithography. Nano Lett. 2014, 14, 960-966.
Russo-Averchi, E.; Vukajlovic Plestina, J.; Tütüncüoglu, G.; Matteini, F.; Dalmau-Mallorquí, A.; de la Mata, M.; Rüffer, D.; Potts, H. A.; Arbiol, J.; Conesa-Boj, S. et al. High yield of GaAs nanowire arrays on Si mediated by the pinning and contact angle of Ga. Nano Lett. 2015, 15, 2869-2874.
Hertenberger, S.; Rudolph, D.; Becker, J.; Bichler, M.; Finley, J. J.; Abstreiter, G.; Koblmüller, G. Rate-limiting mechanisms in high-temperature growth of catalyst-free InAs nanowires with large thermal stability. Nanotechnology 2012, 23, 235602.
Ermez, S.; Jones, E. J.; Crawford, S. C.; Gradečak, S. Self-seeded growth of GaAs nanowires by metal-organic chemical vapor deposition. Cryst. Growth Des. 2015, 15, 2768-2774.
Tomioka, K.; Motohisa, J.; Hara, S.; Fukui, T. Control of InAs nanowire growth directions on Si. Nano Lett. 2008, 8, 3475-3480.
Kriegner, D.; Wintersberger, E.; Kawaguchi, K.; Wallentin, J.; Borgström, M. T.; Stangl, J. Unit cell parameters of wurtzite InP nanowires determined by x-ray diffraction. Nanotechnology 2011, 22, 425704.
Li, T. F.; Chen, Y. H.; Lei, W.; Zhou, X. L.; Luo, S.; Hu, Y. Z.; Wang, L. J.; Yang, T.; Wang, Z.G. Effect of growth temperature on the morphology and phonon properties of InAs nanowires on Si substrates. Nanoscale Res. Lett. 2011, 6, 463.
Wang, X. Y.; Yang, X. G.; Du, W. N.; Ji, H. M.; Luo, S.; Yang, T. Thickness influence of thermal oxide layers on the formation of self-catalyzed InAs nanowires on Si(111) by MOCVD. J. Cryst. Growth 2014, 395, 55-60.
Shi, T. W.; Wang, X. Y.; Wang, B. J.; Wang, W.; Yang, X. G.; Yang, W. Y.; Chen, Q.; Xu, H. Q.; Xu, S. Y.; Yang, T. Nanoscale opening fabrication on Si (111) surface from SiO2 Barrier for vertical growth of Ⅲ-V nanowire arrays. Nanotechnology 2015, 26, 265302.
Gomes, U. P.; Ercolani, D.; Sibirev, N. V; Gemmi, M.; Dubrovskii, V. G.; Beltram, F.; Sorba, L. Catalyst-free growth of InAs nanowires on Si (111) by CBE. Nanotechnology 2015, 26, 415604.
Tomioka, K.; Fukui, T. Tunnel field-effect transistor using InAs nanowire/si heterojunction. Appl. Phys. Lett. 2011, 98, 083114.
Tomioka, K.; Yoshimura, M.; Fukui, T. A Ⅲ-V nanowire channel on silicon for high-performance vertical transistors. Nature 2012, 488, 189-192.
Hertenberger, S.; Rudolph, D.; Bichler, M.; Finley, J. J.; Abstreiter, G.; Koblmüller, G. Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy. J. Appl. Phys. 2010, 108, 114316.
Matteini, F.; Tütüncüoğlu, G.; Rüffer, D.; Alarcón-Lladó, E.; Fontcuberta i Morral, A. Ga-assisted growth of GaAs nanowires on silicon, comparison of surface SiOx of different nature. J. Cryst. Growth 2014, 404, 246-255.
Wang, X. Y.; Yang, W. Y.; Wang, B. J.; Ji, X. H.; Xu, S. Y.; Wang, W.; Chen, Q.; Yang, T. Effect of nanohole size on selective area growth of InAs nanowire arrays on Si substrates. J. Cryst. Growth 2017, 60, 1-4.
Kriegner, D.; Panse, C.; Mandl, B.; Dick, K. A.; Keplinger, M.; Persson, J. M.; Caroff, P.; Ercolani, D.; Sorba, L.; Bechstedt, F. et al. Unit cell structure of crystal polytypes in InAs and InSb nanowires. Nano Lett. 2011, 11, 1483-1489.
Strain++[Online]. 2015. http://jjppeters.github.io/Strainpp/(accessed Mar 10, 2018).
Hÿtch, M. J.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131-146.
Tomioka, K.; Izhizaka, F.; Fukui, T. Selective-area growth of InAs nanowires on Ge and vertical transistor application. Nano Lett. 2015, 15, 7253-7257.
Mandl, B.; Dey, A. W.; Stangl, J.; Cantoro, M.; Wernersson, L. E.; Bauer, G.; Samuelson, L.; Deppert, K.; Thelander, C. Self-seeded, position-controlled InAs nanowire growth on Si: A growth parameter study. J. Cryst. Growth 2011, 334, 51-56.
Liu, B. D.; Yang, B.; Yuan, F.; Liu, Q. Y.; Shi, D.; Jiang, C. H.; Zhang, J. S.; Staedler, T.; Jiang, X. Defect-induced nucleation and epitaxy: A new strategy toward the rational synthesis of WZ-GaN/3C-SiC core-shell heterostructures. Nano Lett. 2015, 15, 7837-7846.
Gomes, U. P.; Ercolani, D.; Zannier, V.; Battiato, S.; Ubyivovk, E.; Mikhailovskii, V.; Murata, Y.; Heun, S.; Beltram, F.; Sorba, L. Heterogeneous nucleation of catalyst-free InAs nanowires on silicon. Nanotechnology 2017, 28, 065603.
Caroff, P.; Dick, K. A.; Johansson, J.; Messing, M. E.; Deppert, K.; Samuelson, L. Controlled polytypic and twin-plane superlattices in Ⅲ-V nanowires. Nat. Nanotechnol. 2009, 4, 50-55.
Li, X.; Wei, X. L.; Xu, T. T.; Ning, Z. Y.; Shu, J. P.; Wang, X. Y.; Pan, D.; Zhao, J. H.; Yang, T.; Chen, Q. Mechanical properties of individual InAs nanowires studied by tensile tests. Appl. Phys. Lett. 2014, 104, 103110.
Choi, S.; Lee, J. H.; Pin, M. W.; Jang, D. W.; Hong, S. G.; Cho, B.; Lee, S. J.; Jeong, J. S.; Yi, S. H.; Kim, Y. H. Study on fracture behavior of individual InAs nanowires using an electron-beam-drilled notch. RSC Adv. 2017, 7, 16655-16661.
Yasaka, T.; Kanda, K.; Sawara, K.; Miyazaki, S.; Hirose, M. Chemical stability of HF-treated SI(111) surfaces. Jpn. J. Appl. Phys. 1991, 30, 3567-3569.
Olmstead, M. A.; Bringans, R. D.; Uhrberg, R. I. G.; Bachrach, R. Z. Arsenic overlayer on Si(111): Removal of surface reconstruction. Phys. Rev. B 1986, 34, 6041-6044.
Becker, R. S.; Klitsner, T.; Vickers, J. S. Arsenic-terminated silicon and germanium surfaces studied by scanning tunnelling microscopy. J. Microsc. 1988, 152, 157-165.
Patel, J. R.; Golovchenko, J. A.; Freeland, P. E.; Gossmann, H. J. Arsenic atom location on passivated silicon (111) surfaces. Phys. Rev. B 1987, 36, 7715(R)-7717(R).
Cheng, C.; Kunc, K. Arsenic adatom structures for Ge(111) and Si(111) surfaces: First-principles calculations. Surf. Sci. 1996, 365, 383-393.
Patterson, C. H.; Messmer, R. P. Structural compromise of the arsenic-terminated silicon (111) surface. Phys. Rev. B 1989, 39, 1372-1374.
Gao, Q.; Dubrovskii, V. G.; Caroff, P.; Wong-Leung, J.; Li, L.; Guo, Y. N.; Fu, L.; Tan, H. H.; Jagadish, C. Simultaneous selective-area and vapor-liquid-solid growth of InP nanowire arrays. Nano Lett. 2016, 16, 4361-4367.