Journal Home > Volume 12 , Issue 3

Oxygen evolving catalyst (OEC) is a critical determinant for the efficiency of photoelectrochemical (PEC) water splitting. Here we report an approach to depositing a novel manganese borate (Mn-Bi) OER catalyst on BiVO4 nanocone photoanode by photodeposition in sodium borate buffer solution containing Mn(Ⅱ) ions. Due to the spontaneous photo-electric-field-enhancement effect at the vertically oriented BiVO4 nanocone structure, spherical Mn-Bi nanoparticle was selectively photodeposited at the apex of BiVO4 nanocone. Significant improvement of photocurrent was observed for the obtained hierarchical Mn-Bi/BiVO4 photoanode which could be ascribed to enhanced hole injection efficiency, especially in low bias region. It was observed that the injection efficiency of Mn-Bi/BiVO4 is 98% which gave a photocurrent of 0.94 mA/cm2 at 1.5 V vs. RHE.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hierarchical growth of a novel Mn-Bi coupled BiVO4 arrays for enhanced photoelectrochemical water splitting

Show Author's information Lu WangJinzhan Su( )Liejin Guo( )
International Research Center for Renewable Energy,State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy & Power Engineering, Xi'an Jiaotong University,Xi'an,710049,China;

Abstract

Oxygen evolving catalyst (OEC) is a critical determinant for the efficiency of photoelectrochemical (PEC) water splitting. Here we report an approach to depositing a novel manganese borate (Mn-Bi) OER catalyst on BiVO4 nanocone photoanode by photodeposition in sodium borate buffer solution containing Mn(Ⅱ) ions. Due to the spontaneous photo-electric-field-enhancement effect at the vertically oriented BiVO4 nanocone structure, spherical Mn-Bi nanoparticle was selectively photodeposited at the apex of BiVO4 nanocone. Significant improvement of photocurrent was observed for the obtained hierarchical Mn-Bi/BiVO4 photoanode which could be ascribed to enhanced hole injection efficiency, especially in low bias region. It was observed that the injection efficiency of Mn-Bi/BiVO4 is 98% which gave a photocurrent of 0.94 mA/cm2 at 1.5 V vs. RHE.

Keywords: bismuth vanadate, photoelectrochemistry, solar water splitting, oxygen evolution

References(50)

1

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.

2

Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001, 414, 625-627.

3

Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 2012, 6, 511-518.

4

Wu, Y. S.; Liu, X. J.; Han, D. D.; Song, X. Y.; Shi, L.; Song, Y.; Niu, S. W.; Xie, Y. F.; Cai, J. Y.; Wu, S. Y. et al. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat. Commun. 2018, 9, 1425.

5

Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446-6473.

6

Song, X. Y.; Li, W. Q.; He, D.; Wu, H. Y.; Ke, Z. J.; Jiang, C. Z.; Wang, G. M.; Xiao, X. H. The "midas touch" transformation of TiO2 nanowire arrays during visible light photoelectrochemical performance by carbon/ nitrogen coimplantation. Adv. Energy Mater. 2018, 8, 1800165.

7

He, D.; Song, X. Y.; Ke, Z. J.; Xiao, X. H.; Jiang, C. Z. Construct Fe2+ species and Au particles for significantly enhanced photoelectrochemical performance of α-Fe2O3 by ion implantation. Sci. China Mater. 2018, 61, 878-886.

8

Woodhouse, M.; Parkinson, B. A. Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem. Soc. Rev. 2009, 38, 197-210.

9

Roger, I.; Shipman, M. A.; Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003.

10

Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253-278.

11

Park, Y.; McDonald, K. J.; Choi, K. S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 2013, 42, 2321-2337.

12

Zhong, M.; Hisatomi, T.; Kuang, Y. B.; Zhao, J.; Liu, M.; Iwase, A.; Jia, Q. X.; Nishiyama, H.; Minegishi, T.; Nakabayashi, M. et al. Surface modification of CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J. Am. Chem. Soc. 2015, 137, 5053-5060.

13

Kudo, A.; Omori, K.; Kato, H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 1999, 121, 11459-11467.

14

Tokunaga, S.; Kato, H.; Kudo, A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater. 2001, 13, 4624-4628.

15

Abdi, F. F.; Han, L. H.; Smets, A. H. M.; Zeman, M.; Dam, B.; van de Krol, R. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 2013, 4, 2195.

16

Seabold, J. A.; Choi, K. S. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 2186-2192.

17

Wan, X. K.; Niu, F. J.; Su, J. Z.; Guo, L. J. Enhanced photoelectro-chemical water oxidation of bismuth vanadate via a combined strategy of W doping and surface RGO modification. Phys. Chem. Chem. Phys. 2016, 18, 31803-31810.

18

Rettie, A. J. E.; Lee, H. C.; Marshall, L. G.; Lin, J. F.; Capan, C.; Lindemuth, J.; McCloy, J. S.; Zhou, J. S.; Bard, A. J.; Mullins, C. B. Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: Intrinsic behavior of a complex metal oxide. J. Am. Chem. Soc. 2013, 135, 11389-11396.

19

Nair, V.; Perkins, C. L.; Lin, Q. Y.; Law, M. Textured nanoporous Mo: BiVO4 photoanodes with high charge transport and charge transfer quantum efficiencies for oxygen evolution. Energy Environ. Sci. 2016, 9, 1412-1429.

20

Pilli, S. K.; Furtak, T. E.; Brown, L. D.; Deutsch, T. G.; Turner, J. A.; Herring, A. M. Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ. Sci. 2011, 4, 5028-5034.

21

Kim, C. W.; Son, Y. S.; Kang, M. J.; Kim, D. Y.; Kang, Y. S. (040)-crystal facet engineering of BiVO4 plate photoanodes for solar fuel production. Adv. Energy Mater. 2016, 6, 1501754.

22

Zhou, M.; Zhang, S. D.; Sun, Y. F.; Wu, C. Z.; Wang, M. T.; Xie, Y. C-oriented and {010} facets exposed BiVO4 nanowall films: Template-free fabrication and their enhanced photoelectrochemical properties. Chem. Asian J. 2010, 5, 2515-2523.

23

Kim, T. W.; Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990-994.

24

Chhetri, M.; Dey, S.; Rao, C. N. R. Photoelectrochemical oxygen evolution reaction activity of amorphous Co-La double hydroxide-BiVO4 fabricated by pulse plating electrodeposition. ACS Energy Lett. 2017, 2, 1062-1069.

25

Wan, X. K.; Wang, L.; Dong, C. L.; Menendez Rodriguez, G.; Huang, Y. C.; Macchioni, A.; Shen, S. H. Activating kläui-type organometallic precursors at metal oxide surfaces for enhanced solar water oxidation. ACS Energy Lett. 2018, 3, 1613-1619.

26

Jia, A. H.; Kan, M.; Jia, J. P.; Zhao, Y. X. Photodeposited FeOOH vs electrodeposited Co-Pi to enhance nanoporous BiVO4 for photo-electrochemical water splitting. J. Semicond. 2017, 38, 053004.

27

Kan, M.; Xue, D. Q.; Jia, A. H.; Qian, X. F.; Yue, D. T.; Jia, J. P.; Zhao, Y. X. A highly efficient nanoporous BiVO4 photoelectrode with enhanced interface charge transfer co-catalyzed by molecular catalyst. Appl. Catal. B Environ. 2018, 225, 504-511.

28

Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072-1075.

29

Surendranath, Y.; Dinca, M.; Nocera, D. G. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J. Am. Chem. Soc. 2009, 131, 2615-2620.

30

Ullman, A. M.; Nocera, D. G. Mechanism of cobalt self-exchange electron transfer. J. Am. Chem. Soc. 2013, 135, 15053-15061.

31

Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G. Structure-activity correlations in a nickel-borate oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 6801-6809.

32

Bediako, D. K.; Surendranath, Y.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. J. Am. Chem. Soc. 2013, 135, 3662-3674.

33

Barber, J. Crystal structure of the oxygen-evolving complex of photosystem Ⅱ. Inorg. Chem. 2008, 47, 1700-1710.

34

Lubitz, W.; Reijerse, E. J.; Messinger, J. Solar water-splitting into H2 and O2: Design principles of photosystem Ⅱ and hydrogenases. Energy Environ. Sci. 2008, 1, 15-31.

35

Su, J. Z.; Guo, L. J.; Yoriya, S.; Grimes, C. A. Aqueous growth of pyramidal-shaped BiVO4 nanowire arrays and structural characterization: Application to photoelectrochemical water splitting. Cryst. Growth Des. 2010, 10, 856-861.

36

Qiu, Y. C.; Liu, W.; Chen, W.; Chen, W.; Zhou, G. M.; Hsu, P. C.; Zhang, R. F.; Liang, Z.; Fan, S. S.; Zhang, Y. G. et al. Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells. Sci. Adv. 2016, 2, e1501764.

37

Feng, X. J.; Shankar, K.; Varghese, O. K.; Paulose, M.; Latempa, T. J.; Grimes, C. A. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett. 2008, 8, 3781-3786.

38

Liu, B.; Aydil, E. S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985-3990.

39

Vayssieres, L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 2003, 15, 464-466.

40

Wang, M.; Ren, F.; Cai, G. X.; Liu, Y. C.; Shen, S. H.; Guo, L. J. Activating ZnO nanorod photoanodes in visible light by cu ion implantation. Nano Res. 2014, 7, 353-364.

41

Wei, Y. K.; Su, J. Z.; Wan, X. K.; Guo, L. J.; Vayssieres, L. Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting. Nano Res. 2016, 9, 1561-1569.

42

Walsh, A.; Yan, Y. F.; Huda, M. N.; Al-Jassim, M. M.; Wei, S. H. Band edge electronic structure of BiVO4: Elucidating the role of the Bi s and V d orbitals. Chem. Mater. 2009, 21, 547-551.

43

McDonald, K. J.; Choi, K. S. A new electrochemical synthesis route for a bioi electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy Environ. Sci. 2012, 5, 8553-8557.

44

Ambrosio, F.; Wiktor, J.; Pasquarello, A. pH-dependent catalytic reaction pathway for water splitting at the BiVO4-water interface from the band alignment. ACS Energy Lett. 2018, 3, 829-834.

45

Steinmiller, E. M. P.; Choi, K. S. Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production. Proc. Natl. Acad. Sci. USA 2009, 106, 20633-20636.

46

Nie, K. Q.; Kashtanov, S.; Wei, Y. K.; Liu, Y. S.; Zhang, H.; Kapilashrami, M.; Ye, Y. F.; Glans, P. A.; Zhong, J.; Vayssieres, L. et al. Atomic-scale understanding of the electronic structure-crystal facets synergy of nanopyramidal CoPi/BiVO4 hybrid photocatalyst for efficient solar water oxidation. Nano Energy 2018, 53, 483-491.

47

Choi, S. K.; Choi, W.; Park, H. Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes. Phys. Chem. Chem. Phys. 2013, 15, 6499-6507.

48

Ma, M.; Qu, F. L.; Ji, X. Q.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Yao, Y. D.; Chen, L.; Sun, X. P. Bimetallic nickel-substituted cobalt-borate nanowire array: An earth-abundant water oxidation electrocatalyst with superior activity and durability at near neutral pH. Small 2017, 13, 1700394.

49

Zhou, M.; Bao, J.; Bi, W. T.; Zeng, Y. Q.; Zhu, R.; Tao, M. S.; Xie, Y. Efficient water splitting via a heteroepitaxial BiVO4 photoelectrode decorated with Co-Pi catalysts. ChemSusChem 2012, 5, 1420-1425.

50

Zhou, X. H.; Liu, R.; Sun, K.; Papadantonakis, K. M.; Brunschwig, B. S.; Lewis, N. S. 570 mV photovoltage, stabilized n-Si/CoOx heterojunction photoanodes fabricated using atomic layer deposition. Energy Environ. Sci. 2016, 9, 892-897.

File
12274_2018_2256_MOESM1_ESM.pdf (862.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 September 2018
Revised: 15 November 2018
Accepted: 25 November 2018
Published: 13 December 2018
Issue date: March 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

We gratefully thank the financial supports from the Fundamental Research Funds for the Central Universities (No. xjj2016039).

Return