Journal Home > Volume 12 , Issue 3

A diverse range of remarkable boron nitride (BN) nanostructures subsuming nano-horns, nano-rods, nano-platelets, and clusters of hollow nanospheres (nano-onions, arguably of greatest applied and fundamental interest) have been produced exclusively from crystalline BN precursor powder via lamp ablation. The procedure is safe, devoid of toxic reagents, simple, rapid and scalable-generating some genres of nanoparticles that had previously proved elusive. Product structure and composition were unambiguously assessed by high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Panorama of boron nitride nanostructures via lamp ablation

Show Author's information Sehrina Eshon1Weike Zhang3Martin Saunders2Yujun Zhang4Hui Tong Chua1Jeffrey M. Gordon1,5( )
Department of Chemical Engineering, The University of Western Australia, Perth, WA 6009, Australia
Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia
School of Environmental Science and Engineering,Taiyuan University of Technology,Taiyuan,030024,China;
Department of Material Science and Engineering,Shandong University,Jinan,250061,China;
Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel

Abstract

A diverse range of remarkable boron nitride (BN) nanostructures subsuming nano-horns, nano-rods, nano-platelets, and clusters of hollow nanospheres (nano-onions, arguably of greatest applied and fundamental interest) have been produced exclusively from crystalline BN precursor powder via lamp ablation. The procedure is safe, devoid of toxic reagents, simple, rapid and scalable-generating some genres of nanoparticles that had previously proved elusive. Product structure and composition were unambiguously assessed by high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy.

Keywords: boron nitride, nanostructures, nano-onions, lamp ablation, non-toxic

References(49)

1

Zunger, A.; Katzir, A.; Halperin, A. Optical properties of hexagonal boron nitride. Phys. Rev. B 1976, 13, 5560-5573.

2

Kho, J. G.; Moon, K. T.; Kim, J. H.; Kim, D. P. Properties of boron nitride (BxNy) films produced by the spin-coating process of polyborazine. J. Am. Chem. Soc. 2000, 83, 2681-2683.

3

Paine, R. T.; Narula, C. K. Synthetic routes to boron nitride. Chem. Rev. 1990, 90, 73-91.

4

O'Connor, T. E. Synthesis of boron nitride. J. Am. Chem. Soc. 1962, 84, 1753-1754.

5

Corso, M.; Auwärter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Boron nitride nanomesh. Science 2004, 303, 217-220.

6

Chen, X.; Wu, P.; Rousseas, M.; Okawa, D.; Gartner, Z.; Zettl, A.; Bertozzi, C. R. Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J. Am. Chem. Soc. 2009, 131, 890-891.

7

Tenne, R. Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotechnol. 2006, 1, 103-111.

8

Jiang, X. F.; Weng, Q. H.; Wang, X. B.; Li, X.; Zhang, J.; Golberg, D.; Bando, Y. Recent progress on fabrications and applications of boron nitride nanomaterials: A review. J. Mater. Sci. Technol. 2015, 31, 589-598.

9

Zhong, B.; Song, L.; Huang, X. X.; Wen, G. W.; Xia, L. Synthesis of boron nitride nanotubes with SiC nanowire as template. Mater. Res. Bull. 2011, 46, 1521-1523.

10

Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Boron nitride nanotubes. Science 1995, 269, 966-967.

11

Zhong, B.; Huang, X. X.; Wen, G. W.; Yu, H. M.; Zhang, X. D.; Zhang, T.; Bai, H. W. Large-scale fabrication of boron nitride nanotubes via a facile chemical vapor reaction route and their cathodoluminescence properties. Nanosale Res. Lett. 2010, 6, 36.

12

Golberg, D.; Bando, Y.; Tang, C. C.; Zhi, C. Y. Boron nitride nanotubes. Adv. Mater. 2007, 19, 2413-2432.

13

Zhou, H.; Zhou, Z. J.; Yu, G. T.; Chen, W.; Huang, X. R.; Li, Z. R. Nonlinear optical response and transparency of hexagonal boron nitride hybrid graphene nanoribbons. Chem. Phys. Lett. 2014, 614, 57-61.

14

Zhu, Y. C.; Bando, Y.; Xue, D. F.; Sekiguchi, T.; Golberg, D.; Xu, F. F.; Liu, Q. L. New boron nitride whiskers: Showing strong ultraviolet and visible light luminescence. J. Phys. Chem. B 2004, 108, 6193-6196.

15

Terauchi, M.; Tanaka, M.; Suzuki, K.; Ogino, A.; Kimura, K. Production of zigzag-type BN nanotubes and BN cones by thermal annealing. Chem. Phys. Lett. 2000, 324, 359-364.

16

Zhong, B.; Zhao, G. L.; Huang, X. X.; Zhang, X. D.; Chen, J. W.; Ren, H. J.; Wen, G. W. A facile route to high-purity BN nanoplates with ultraviolet cathodoluminescence emissions at room temperature. Mater. Res. Bull. 2014, 53, 190-195.

17

Li, X.; Wang, X. P.; Zhang, J.; Hanagata, N.; Wang, X. B.; Weng, Q. H.; Ito, A.; Bando, Y.; Golberg, D. Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment. Nat. Commun. 2017, 8, 13936.

18

Zhong, B.; Tang, X. H.; Huang, X. X.; Xia, L.; Zhang, X. D.; Wang, C. J.; Wen, G. W. Boron nitride hollow nanospheres: Synthesis, formation mechanism and dielectric property. Mater. Res. Bull. 2015, 64, 61-67.

19

Sun, C. H.; Guo, C. L.; Ma, X. J.; Xu, L. Q.; Qian, Y. T. A facile route to prepare boron nitride hollow particles at 450℃. J. Cryst. Growth 2009, 311, 3682-3686.

20

Wang, X. J; Xie, Y.; Guo, Q. X. Synthesis of high quality inorganic fullerene-like BN hollow spheres via a simple chemical route. Chem. Commun. 2003, 2688-2689.

21

Golberg, D.; Bando, Y.; Stéphan, O.; Kurashima, K. Octahedral boron nitride fullerenes formed by electron beam irradiation. Appl. Phys. Lett. 1998, 73, 2441-2443.

22

Zhong, B.; Wu, Y.; Huang, X. X.; Wen, G. W.; Yu, H. M.; Zhang, T. Hollow BN microspheres constructed by nanoplates: Synthesis, growth mechanism and cathodoluminescence property. CrystEngComm 2011, 13, 819-826.

23

Bernard, S.; Salles, V.; Li, J. P.; Brioude, A.; Bechelany, M.; Demirci, U. B.; Miele, P. High-yield synthesis of hollow boron nitride nano-polyhedrons. J. Mater. Chem. 2011, 21, 8694-8699.

24

El Khalifi, M.; Bentin, J.; Duverger, E.; Gharbi, T.; Boulahdour, H.; Picaud, F. Encapsulation capacity and natural payload delivery of an anticancer drug from boron nitride nanotube. Phys. Chem. Chem. Phys. 2016, 18, 24994-25001.

25

Zhang, X.; Lian, G.; Zhang, S. J.; Cui, D. L.; Wang, Q. L. Boron nitride nanocarpets: Controllable synthesis and their adsorption performance to organic pollutants. CrystEngComm 2012, 14, 4670-4676.

26

Sun, Q.; Li, Z.; Searles, D. J.; Chen, Y.; Lu, G. Q.; Du, A. J. Charge-controlled switchable CO2 capture on boron nitride nanomaterials. J. Am. Chem. Soc. 2013, 135, 8246-8253.

27

Lei, W. W.; Portehault, D.; Liu, D.; Qin, S.; Chen, Y. Porous boron nitride nanosheets for effective water cleaning. Nat. Commun. 2013, 4, 1777.

28

Lian, G.; Zhang, X.; Zhang, S. J.; Liu, D.; Cui, D. L.; Wang, Q. L. Controlled fabrication of ultrathin-shell BN hollow spheres with excellent performance in hydrogen storage and wastewater. Energy Environ. Sci. 2012, 5, 7072-7080.

29

Fu, M. Z.; Xing, H. Z.; Chen, X. F.; Chen, F.; Wu, C. M. L.; Zhao, R. S.; Cheng, C. G. Ultrathin-shell boron nitride hollow spheres as sorbent for dispersive solid-phase extraction of polychlorinated biphenyls from environmental water samples. J. Chromatogr. A 2014, 1369, 181-185.

30

Huang, Q.; Bando, Y.; Xu, X.; Nishimura, T.; Zhi C. Y.; Tang, C. C.; Xu, F. F.; Gao, L.; Golberg, D. Enhancing superplasticity of engineering ceramics by introducing BN nanotubes. Nanotechnology 2007, 18, 485706.

31

Golberg, D.; Rode, A.; Bando, Y.; Mitome, M.; Gamaly, E.; Luther-Davies, B. Boron nitride nanostructures formed by ultra-high-repetition rate laser ablation. Diam. Relat. Mater. 2003, 12, 1269-1274.

32

Golberg, D.; Bando, Y.; Eremets, M.; Takemura, K.; Kurashima, K.; Yusa, H. Nanotubes in boron nitride laser heated at high pressure. Appl. Phys. Lett. 1996, 69, 2045-2047.

33

Lee, R. S.; Gavillet, J.; Lamy de la Chapelle, M.; Loiseau, A; Cochon, J. L.; Pigache, C. D.; Thibault, J.; Willaime, F. Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration. Phys. Rev. B 2001, 64, 121405.

34

Nistor, L. C.; Epurescu, G.; Dinescu, M.; Dinescu, G. Boron nitride nano-structures produced by pulsed laser ablation in acetone. IOP Conf. Ser. Mater. Sci. Eng. 2010, 15, 012067.

35

Tang, C. C.; Bando, Y.; Golberg, D. Large-scale synthesis and structure of boron nitride sub-micron spherical particles. Chem. Commun. 2002, 2826-2827.

36

Tang, C. C.; Bando, Y.; Huang, Y.; Zhi, C. Y.; Golberg, D. Synthetic routes and formation mechanisms of spherical boron nitride nanoparticles. Adv. Funct. Mater. 2008, 18, 3653-3661.

37

Li, X. P.; Zhang, J.; Yu, C.; Liu, X. X.; Abbas, S.; Li, J.; Xue, Y. M.; Tang, C. C. Hexagonal boron nitride hollow capsules with collapsed surfaces: Chemical vapor deposition with single-source precursor ammonium fluoroborate. Chin. Phys. B 2016, 25, 0781071.

38

Xu, L. Q.; Peng, Y. Y.; Meng, Z. Y.; Yu, W. C.; Zhang, S. Y.; Liu X. M.; Qian, Y. T. A co-pyrolysis method to boron nitride nanotubes at relative low temperature. Chem. Mater. 2003, 15, 2675-2680.

39

Chen, L. Y.; Gu, Y. L.; Shi, L.; Yang, Z. H.; Ma, J. H.; Qian, Y. T. A room-temperature approach to boron nitride hollow spheres. Solid State Commun. 2004, 130, 537-540.

40

Xu, L. Q.; Peng, Y. Y.; Meng, Z. Y.; Wang, D. B.; Zhang, W. Q.; Qian, Y. T. Fabrication and characterization of hollow spherical boron nitride powders. Chem. Phys. Lett. 2003, 381, 74-79.

41

Wen, G. W.; Zhong, B.; Huang, X. X.; Yu, H. M.; Zhang, X. D.; Zhang, T.; Bai, H. W. Novel BN hollow microspheres with open mouths-Facile synthesis, growth mechanism, resonant Raman scattering effect, and cathodoluminescence performance. Eur. J. Inorg. Chem. 2010, 2010, 5538-5544.

42

Huang, J. Y.; Yasuda, H.; Mori, H. Highly curved carbon nanostructures produced by ball-milling. Chem. Phys. Lett. 1999, 303, 130-134.

43

Geick, R.; Perry, C. H.; Rupprecht, G. Normal modes in hexagonal boron nitride. Phys. Rev. 1966, 146, 543-547.

44

Nemanich, R. J.; Solin, S. A.; Martin, R. M. Light scattering study of boron nitride microcrystals. Phys. Rev. B 1981, 23, 6348-6356.

45

Schué, L.; Stenger, I.; Fossard, F.; Loiseau, A.; Barjon, J. Characterization methods dedicated to nanometer-thick hBN layers. 2D Mater. 2016, 4, 015028.

46

Lu, H. B.; Chan, B. C. Y.; Wang, X. L.; Chua, H. T.; Raston, C. L.; Albu-Yaron, A.; Levy, M.; Popowitz-Biro, R.; Tenne, R.; Feuermann, D.; Gordon, J. M. High-yield synthesis of silicon carbide nanowires by solar and lamp ablation. Nanotechnology 2013, 24, 335603.

47

Gordon, J. M.; Katz, E. A.; Feuermann, D.; Albu-Yaron, A.; Levy, M.; Tenne, R. Singular MoS2, SiO2 and Si nanostructures-Synthesis by solar ablation. J. Mater. Chem. 2008, 18, 458-462.

48

Levy, M.; Albu-Yaron, A.; Tenne, R.; Feuermann, D.; Katz, E. A.; Babai, D.; Gordon, J. M. Synthesis of inorganic fullerene-like nanostructures by concentrated solar and artificial light. Isr. J. Chem. 2010, 50, 417-425.

49

Lu, H. B.; Woi, W. S.; Tan, X. Y.; Gibson, C. T.; Chen, X. J.; Raston, C. L.; Gordon, J. M.; Chua, H. T. Synthesis of few-layer graphene by lamp ablation. Carbon 2015, 94, 349-351.

File
12274_2018_2252_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 August 2018
Revised: 16 November 2018
Accepted: 21 November 2018
Published: 12 December 2018
Issue date: March 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This research was generously funded by a University of Western Australia Pathfinder grant. Also, the authors acknowledge the facilities, and the scientific and technical assistance of the Microscopy Australia at the Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, a facility funded by the University, State and Commonwealth Governments.

Return