Journal Home > Volume 12 , Issue 3

Rechargeable lithium-iodine (Li-I2) battery is a promising energy storage system because of the high energy and power density. However, the shuttle effects of iodine species and the unstable features of I2 block the practical applications of Li-I2 batteries. Herein, a dual heteroatom doped porous carbon cloth is fabricated as the host material for lithium iodide (LiI). Specifically, the self-standing nitrogen, phosphorus co-doped carbon cloth with high LiI loading exhibits a large specific capacity (221 mAhdg-1 at 1 C), excellent rate capability (95.8% capacity retention at 5 C) and superior long cycling stability (2, 000 cycles with a capacity retention of 96%). Electrochemical kinetic analysis confirms the dominant contribution of capacitive effects at high scan rates, which is responsible for the good high-rate performance. The improved electrochemical performance mainly stems from two unique features of nitrogen, phosphorus co-doped porous carbon cloth. Heteroatom doping provides extra active sites for strong adsorption of iodine species while the highly porous structure with large surface area favors the capacitive effects at high rates. This work provides a facile yet efficient approach to regulating both redox reaction and capacitive effects via adjusting surface composition and pore structure of carbon materials for enhanced battery performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nitrogen, phosphorus co-doped carbon cloth as self-standing electrode for lithium-iodine batteries

Show Author's information Kang Li1Song Chen1Si Chen1Xien Liu2Wei Pan3Jintao Zhang1( )
Key Laboratory for Colloid and Interface Chemistry,Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University,Jinan,250100,China;
State Key Laboratory Base of Eco-chemical Engineering,College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology,Qingdao,266042,China;
College of Chemistry,Chemical Engineering and Materials Science, Shandong Normal University,Jinan,250014,China;

Abstract

Rechargeable lithium-iodine (Li-I2) battery is a promising energy storage system because of the high energy and power density. However, the shuttle effects of iodine species and the unstable features of I2 block the practical applications of Li-I2 batteries. Herein, a dual heteroatom doped porous carbon cloth is fabricated as the host material for lithium iodide (LiI). Specifically, the self-standing nitrogen, phosphorus co-doped carbon cloth with high LiI loading exhibits a large specific capacity (221 mAhdg-1 at 1 C), excellent rate capability (95.8% capacity retention at 5 C) and superior long cycling stability (2, 000 cycles with a capacity retention of 96%). Electrochemical kinetic analysis confirms the dominant contribution of capacitive effects at high scan rates, which is responsible for the good high-rate performance. The improved electrochemical performance mainly stems from two unique features of nitrogen, phosphorus co-doped porous carbon cloth. Heteroatom doping provides extra active sites for strong adsorption of iodine species while the highly porous structure with large surface area favors the capacitive effects at high rates. This work provides a facile yet efficient approach to regulating both redox reaction and capacitive effects via adjusting surface composition and pore structure of carbon materials for enhanced battery performance.

Keywords: iodine, heteroatom doping, self-standing, capacitive effect, porous carbon

References(47)

1

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

2

Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930-2946.

3

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587-603.

4

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.

5

Zhu, Y. Q.; Cao, C. B. A simple synthesis of two-dimensional ultrathin nickel cobaltite nanosheets for electrochemical lithium storage. Electrochim. Acta 2015, 176, 141-148.

6

Zou, Y. H.; Yang, X. F.; Lv, C. X.; Liu, T. C.; Xia, Y. Z.; Shang, L.; Waterhouse, G. I. N.; Yang, D. J.; Zhang, T. R. Multishelled Ni-rich Li(NixCoyMnz)O2 hollow fibers with low cation mixing as high-performance cathode materials for Li-ion batteries. Adv. Sci. 2017, 4, 1600262.

7

Zhu, Y. Q.; Cao, C. B.; Zhang, J. T.; Xu, X. Y. Two-dimensional ultrathin ZnCo2O4 nanosheets: General formation and lithium storage application. J. Mater. Chem. A 2015, 3, 9556-9564.

8

Xiao, Z. T.; Meng, J. S.; Li, Q.; Wang, X. P.; Huang, M.; Liu, Z. A.; Han, C. H.; Mai, L. Q. Novel MOF shell-derived surface modification of Li-rich layered oxide cathode for enhanced lithium storage. Sci. Bull. 2018, 63, 46-53.

9

Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Zhao, Y.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2017, 7, 1700467.

10

Zhao, Q.; Lu, Y. Y.; Zhu, Z. Q.; Tao, Z. L.; Chen, J. Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode. Nano Lett. 2015, 15, 5982-5987.

11

Lu, K.; Hu, Z. Y.; Ma, J. Z.; Ma, H. Y.; Dai, L. M.; Zhang, J. T. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry. Nat. Commun. 2017, 8, 527.

12

Zhao, Y.; Hong, M. S.; Bonnet Mercier, N.; Yu, G. H.; Choi, H. C.; Byon, H. R. A 3.5 V lithium-iodine hybrid redox battery with vertically aligned carbon nanotube current collector. Nano Lett. 2014, 14, 1085-1092.

13

Bertasi, F.; Sepehr, F.; Pagot, G.; Paddison, S. J.; Di Noto, V. Toward a magnesium-iodine battery. Adv. Funct. Mater. 2016, 26, 4860-4865.

14

Zhang, Q.; Wu, Z. Z.; Liu, F.; Liu, S.; Liu, J.; Wang, Y. L.; Yan, T. Y. Encapsulating a high content of iodine into an active graphene substrate as a cathode material for high-rate lithium-iodine batteries. J. Mater. Chem. A 2017, 5, 15235-15242.

15

Zhao, Y.; Wang, L. N.; Byon, H. R. High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat. Commun. 2013, 4, 1896.

16

Zhao, Y.; Mercier, N. B.; Byon, H. R. An aqueous lithium-iodine battery with solid polymer electrolyte-coated metallic lithium anode. ChemPlusChem 2015, 80, 344-348.

17

Li, K. D.; Lin, B.; Li, Q. F.; Wang, H. F.; Zhang, S.; Deng, C. Anchoring iodine to N-doped hollow carbon fold-hemisphere: Toward a fast and stable cathode for rechargeable lithium-iodine batteries. ACS Appl. Mater. Interfaces 2017, 9, 20508-20518.

18

Kim, S.; Kim, S. K.; Sun, P. C.; Oh, N.; Braun, P. V. Reduced graphene oxide/LiI composite lithium ion battery cathodes. Nano Lett. 2017, 17, 6893-6899.

19

Wang, Y. L.; Sun, Q. L.; Zhao, Q. Q.; Cao, J. S.; Ye, S. H. Rechargeable lithium/iodine battery with superior high-rate capability by using iodine-carbon composite as cathode. Energy Environ. Sci. 2011, 4, 3947-3950.

20

Su, Z.; Wei, Z. X.; Lai, C.; Deng, H. Q.; Liu, Z. X.; Ma, J. M. Robust pseudo-capacitive Li-I2 battery enabled by catalytic, adsorptive N-doped graphene interlayer. Energy Storage Mater. 2018, 14, 129-135.

21

Wu, Z. Z.; Xu, J. T.; Zhang, Q.; Wang, H. B.; Ye, S. H.; Wang, Y. L.; Lai, C. LiI embedded meso-micro porous carbon polyhedrons for lithium iodine battery with superior lithium storage properties. Energy Storage Mater. 2018, 10, 62-68.

22

Tian, H. J.; Gao, T.; Li, X. G.; Wang, X. W.; Luo, C.; Fan, X. L.; Yang, C. Y.; Suo, L. M.; Ma, Z. H.; Han, W. Q. et al. High power rechargeable magnesium/iodine battery chemistry. Nat. Commun. 2017, 8, 14083.

23

Bai, C.; Cai, F. S.; Wang, L. C.; Guo, S. Q.; Liu, X. Z.; Yuan, Z. H. A sustainable aqueous Zn-I2 battery. Nano Res. 2018, 11, 3548-3554.

24

Pan, H. L.; Li, B.; Mei, D. H.; Nie, Z. M.; Shao, Y. Y.; Li, G. S.; Li, X. S.; Han, K. S.; Mueller, K. T. et al. Controlling solid-liquid conversion reactions for a highly reversible aqueous zinc-iodine battery. ACS Energy Lett. 2017, 2, 2674-2680.

25

Yuan, L. Y.; Lu, X. H.; Xiao, X.; Zhai, T.; Dai, J. J.; Zhang, F. C.; Hu, B.; Wang, X.; Gong, L.; Chen, J. et al. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 2012, 6, 656-661.

26

Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444-452.

27

Cong, H. P.; Ren, X. C.; Wang, P.; Yu, S. H. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 2013, 6, 1185-1191.

28

Wang, D. W.; Li, F.; Zhao, J. P.; Ren, W. C.; Chen, Z. G.; Tan, J.; Wu, Z. S.; Gentle, I.; Lu, G. Q.; Cheng, H. M. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 2009, 3, 1745-1752.

29

Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, 61, 1527-1535, DOI: 10.1007/s40843-018-9324-0.

30

Zhu, Y. Q.; Cao, T.; Cao, C. B.; Ma, X. L.; Xu, X. Y.; Li, Y. D. A general synthetic strategy to monolayer graphene. Nano Res. 2018, 11, 3088-3095.

31

Shang, L.; Yu, H. J.; Huang, X.; Bian, T.; Shi, R.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. . Well-dispersed ZIF-derived Co, N-co-doped Carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv. Mater. 2016, 28, 1668-1674.

32

Yuan, H.; Liu, J.; Li, H. S.; Li, Y. J.; Liu, X. F.; Shi, D. X.; Wu, Q.; Jiao, Q. Z. Graphitic carbon nitride quantum dot decorated three-dimensional graphene as an efficient metal-free electrocatalyst for triiodide reduction. J. Mater. Chem. A 2018, 6, 5603-5607.

33

Zhang, J. T.; Qu, L. T.; Shi, G. Q.; Liu, J. Y.; Chen, J. F.; Dai, L. M. N, P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angew. Chem., Int. Ed. 2016, 55, 2230-2234.

34

Xu, J. T.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S. X.; Dai, L. M. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 2015, 27, 2042-2048.

35

Meng, Z.; Tian, H. J.; Zhang, S. L.; Yan, X. F.; Ying, H. J.; He, W.; Liang, C.; Zhang, W. K.; Hou, X. H.; Han, W. Q. Polyiodide-shuttle restricting polymer cathode for rechargeable lithium/iodine battery with ultralong cycle life. ACS Appl. Mater. Interfaces 2018, 10, 17933-17941.

36

Yang, Y.; Zheng, G. Y.; Misra, S.; Nelson, J.; Toney, M. F.; Cui, Y. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J. Am. Chem. Soc. 2012, 134, 15387-15394.

37

Weinstein, L.; Yourey, W.; Gural, J.; Amatucci, G. G. Electrochemical impedance spectroscopy of electrochemically self-assembled lithium-iodine batteries. J. Electrochem. Soc. 2008, 155, A590-A598.

38

Schmidt, C. L.; Skarstad, P. M. Development of an equivalent-circuit model for the lithium/iodine battery. J. Power Sources 1997, 65, 121-128.

39

Ma, X. L.; Ning, G. Q.; Qi, C. L.; Xu, C. G.; Gao, J. S. Phosphorus and nitrogen dual-doped few-layered porous graphene: A high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 14415-14422.

40

Hou, H. S.; Shao, L. D.; Zhang, Y.; Zou, G. Q.; Chen, J.; Ji, X. B. Large-area carbon nanosheets doped with phosphorus: A high-performance anode material for sodium-ion batteries. Adv. Sci. 2017, 4, 1600243.

41

Zhu, Y. Q.; Guo, H. Z.; Wu, Y.; Cao, C. B.; Tao, S.; Wu, Z. Y. Surface-enabled superior lithium storage of high-quality ultrathin NiO nanosheets. J. Mater. Chem. A 2014, 2, 7904-7911.

42

Zhu, Y. Q.; Guo, H. Z.; Zhai, H. Z.; Cao, C. B. Microwave-assisted and gram-scale synthesis of ultrathin SnO2 nanosheets with enhanced lithium storage properties. ACS Appl. Mater. Interfaces 2015, 7, 2745-2753.

43

Ge, P.; Zhang, C. Y.; Hou, H. S.; Wu, B. K.; Zhou, L.; Li, S. J.; Wu, T. J.; Hu, J. G.; Mai, L. Q.; Ji, X. B. Anions induced evolution of Co3X4 (X=O, S, Se) as sodium-ion anodes: The influences of electronic structure, morphology, electrochemical property. Nano Energy 2018, 48, 617-629.

44

Xia, X. H.; Chao, D. L.; Zhang, Y. Q.; Zhan, J. Y.; Zhong, Y.; Wang, X. L.; Wang, Y. D.; Shen, Z. X.; Tu, J. P.; Fan, H. J. Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 2016, 12, 3048-3058.

45

Chao, D. L.; Zhu, C. R.; Yang, P. H.; Xia, X. H.; Liu, J. L.; Wang, J.; Fan, X. F.; Savilov, S. V.; Lin, J. Y.; Fan, H. J. et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 2016, 7, 12122.

46

Chee, W. K.; Lim, H. N.; Zainal, Z.; Huang, N. M.; Harrison, I.; Andou, Y. Flexible graphene-based supercapacitors: A review. J. Phys. Chem. C 2016, 120, 4153-4172.

47

Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudo-capacitors. Nat. Mater. 2010, 9, 146-151.

File
12274_2018_2251_MOESM1_ESM.pdf (8.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 September 2018
Revised: 06 November 2018
Accepted: 20 November 2018
Published: 03 December 2018
Issue date: March 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21503116). The Taishan Scholars Program of Shandong Province (Nos. tsqn20161004 and ts201712011) and the Youth 1000 Talent Program of China are also acknowledged.

Return