Journal Home > Volume 12 , Issue 3

We present a new scheme for visibly-opaque but near-infrared-transmitting filters involving 7 layers based on one-dimensional ternary photonic crystals, with capabilities in reaching nearly 100% transmission efficiency in the near-infrared region. Different decorative reflection colors can be created by adding additional three layers while maintaining the near-infrared transmission performance. In addition, our proposed structural colors show great angular insensitivity up to ±60° for both transverse electric and transverse magnetic polarizations, which are highly desired in various fields. The facile strategy described here involves a simple deposition method for the fabrication, thereby having great potential in diverse applications such as image sensors, anti-counterfeit tag, and optical measurement systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Decorative near-infrared transmission filters featuring high-efficiency and angular-insensitivity employing 1D photonic crystals

Show Author's information Chengang Ji1,§Chenying Yang1,2,§Weidong Shen2( )Kyu-Tae Lee3Yueguang Zhang2Xu Liu2L. Jay Guo1( )
Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109, USA
State Key Laboratory of Modern Optical Instrumentation,Department of Optical Engineering, Zhejiang University,Hangzhou,310027,China;
Department of Physics, Inha University, Incheon 22212, Republic of Korea

§ Chengang Ji and Chenying Yang contributed equally to this work.

Abstract

We present a new scheme for visibly-opaque but near-infrared-transmitting filters involving 7 layers based on one-dimensional ternary photonic crystals, with capabilities in reaching nearly 100% transmission efficiency in the near-infrared region. Different decorative reflection colors can be created by adding additional three layers while maintaining the near-infrared transmission performance. In addition, our proposed structural colors show great angular insensitivity up to ±60° for both transverse electric and transverse magnetic polarizations, which are highly desired in various fields. The facile strategy described here involves a simple deposition method for the fabrication, thereby having great potential in diverse applications such as image sensors, anti-counterfeit tag, and optical measurement systems.

Keywords: near-infrared (NIR)-transmitting filters, colored decorations, photonic crystals, multilayer structures

References(33)

1

Shcherbakova, D. M.; Verkhusha, V. V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat. Methods 2013, 10, 751-754.

2

Kim, S.; Lim, Y. T.; Soltesz, E. G.; De Grand, A. M.; Lee, J.; Nakayama, A.; Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M. et al. Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 2004, 22, 93-97.

3

Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 2003, 7, 626-634.

4

Park, H.; Crozier, K. B. Multispectral imaging with vertical silicon nanowires. Sci. Rep. 2013, 3, 2460.

5

Koyama, S.; Inaba, Y.; Kasano, M.; Murata, T. A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR. IEEE Trans. Electron Devices 2008, 55, 754-759.

6

Barone, P. W.; Baik, S.; Heller, D. A.; Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 2005, 4, 86-92.

7

Yuan, L.; Lin, W. Y.; Zhao, S.; Gao, W. S.; Chen, B.; He, L. W.; Zhu, S. A. A unique approach to development of near-infrared fluorescent sensors for in vivo imaging. J. Am. Chem. Soc. 2012, 134, 13510-13523.

8

Werle, P.; Slemr, F.; Maurer, K.; Kormann, R.; Mücke, R.; Jänker, B. Near- and mid-infrared laser-optical sensors for gas analysis. Opt. Lasers Eng. 2002, 37, 101-114.

9

Ghosh, S.; Cherumukkil, S.; Suresh, C. H.; Ajayaghosh, A. A supramolecular nanocomposite as a near-infrared-transmitting optical filter for security and forensic applications. Adv. Mater. 2017, 29, 1703783.

10

Tucker, R. J. Visibly opaque infrared transmitting optical filter containing a combination of copper and vanadyl phthalocyanine sulfonamides. U.S. Patent 4, 039, 467, August 2, 1977.

11

Momose, M.; Todokoro, A. Infrared transmissive thermoplastic composition, and articles formed therefrom. U.S. Patent 7, 727, 418, June 1, 2010.

12

Morgan, M. D.; Horne, W. E.; Sundaram, V.; Wolfe, J. C.; Pendharkar, S. V.; Tiberio, R. Application of optical filters fabricated by masked ion beam lithography. J. Vac. Sci. Technol. B 1996, 14, 3903-3906.

13

Heinzel, A.; Boerner, V.; Gombert, A.; Bläsi, B.; Wittwer, V.; Luther, J. Radiation filters and emitters for the NIR based on periodically structured metal surfaces. J. Mod. Opt. 2000, 47, 2399-2419.

14

Zhang, J. J.; Xiao, S. S.; Jeppesen, C.; Kristensen, A.; Mortensen, N. A. Electromagnetically induced transparency in metamaterials at near-infrared frequency. Opt. Express 2010, 18, 17187-17192.

15

Zhang, S.; Fan, W. J.; Malloy, K. J.; Brueck, S. R. J.; Panoiu, N. C.; Osgood, R. M. Near-infrared double negative metamaterials. Opt. Express 2005, 13, 4922-4930.

16

Sokar, A. A. Z.; Hutter, F. X.; Burghartz, J. N. Generation of red color and near infrared bandpass filters using nano-scale plasmonic structures. In Proceedings of SPIE 9502, Metamaterials X, Prague, Czech Republic, 2015, p 95020U.

17

Yang, Z. M.; Zhou, Y. M.; Chen, Y. Q.; Wang, Y. S.; Dai, P.; Zhang, Z. G.; Duan, H. G. Reflective color filters and monolithic color printing based on asymmetric fabry-perot cavities using nickel as a broadband absorber. Adv. Opt. Mater. 2016, 4, 1196-1202.

18

Yang, Z. M.; Chen, Y. Q.; Zhou, Y. M.; Wang, Y. S.; Dai, P.; Zhu, X. P.; Duan, H. G. Microscopic interference full-color printing using grayscale-patterned fabry-perot resonance cavities. Adv. Opt. Mater. 2017, 5, 1700029.

19

Macleod, H. A. Thin-film Optical Filters, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2001.

DOI
20

Hawkins, G. J.; Sherwood, R. E.; Barrett, B. M.; Wallace, M.; Orr, H. J. B.; Matthews, K.; Bisht, S. High-performance infrared narrow-bandpass filters for the Indian National Satellite System meteorological instrument (INSAT-3D). Appl. Opt. 2008, 47, 2346-2356.

21

Orr, H. J. B.; Wallace, M.; Dalton, G. B. Near-infrared bandpass filters with improved transparency for 1000 nm spectral region using sputtered silicon compound films. In Proceedings of SPIE 7018, Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation, Marseille, France, 2008, p 701830.

22

Piegari, A.; Sytchkova, A. K.; Di Sarcina, I.; Bulir, J. Visible and near-infrared filters for miniaturized spectrometers. In Proceedings of SPIE 7018, Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation, Marseille, France, 2008, p 701855.

23

Kumar, S. A.; Nagendra, C. L.; Shanbhogue, H. G.; Thutupalli, G. K. M. Near-infrared bandpass filters from Si/SiO2 multilayer coatings. Opt. Eng. 1999, 38, 368-380.

24

Lu, J. High performance infrared narrow band pass filters for infrared sensors and systems. In SENSOR + TEST Conference 2009, Nürnberg, Germany, 2009, pp 275-280.

25

Ohtera, Y.; Onuki, T.; Inoue, Y.; Kawakami, S. Multichannel photonic crystal wavelength filter array for near-infrared wavelengths. J. Lightwave Technol. 2007, 25, 499-503.

26

Ufford, C.; Baumeister, P. Graphical aids in the use of equivalent index in multilayer-filter design. J. Opt. Soc. Am. 1974, 64, 329-334.

27

Pettersson, L. A. A.; Roman, L. S.; Inganäs, O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 1999, 86, 487-496.

28

Awasthi, S. K.; Ojha, S. P. Design of a tunable optical filter by using a one-dimensional ternary photonic band gap material. Prog. Electromagn. Res. M 2008, 4, 117-132.

29

Winn, J. N.; Fink, Y.; Fan, S. H.; Joannopoulos, J. D. Omnidirectional reflection from a one-dimensional photonic crystal. Opt. Lett. 1998, 23, 1573-1575.

30

Fink, Y.; Winn, J. N.; Fan, S. H.; Chen, C. P.; Michel, J.; Joannopoulos, J. D.; Thomas, E. L. A dielectric omnidirectional reflector. Science 1998, 282, 1679-1682.

31

Lee, K. -T.; Ji, C. G.; Banerjee, D.; Guo, L. J. Angular- and polarization-independent structural colors based on 1D photonic crystals. Laser Photon. Rev. 2015, 9, 354-362.

32

Song, H. M.; Guo, L. Q.; Liu, Z. J.; Liu, K.; Zeng, X.; Ji, D. X.; Zhang, N.; Hu, H. F.; Jiang, S. H.; Gan, Q. Q. Nanocavity enhancement for ultra-thin film optical absorber. Adv. Mater. 2014, 26, 2737-2743.

33

Liu, D.; Li, Q. Sub-nanometer planar solar absorber. Nano Energy 2017, 34, 172-180.

File
12274_2018_2249_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 August 2018
Revised: 14 November 2018
Accepted: 20 November 2018
Published: 05 December 2018
Issue date: March 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

The authors would like to thank the National Science Foundation Grant (No. CMMI-1727918) for the partial support of this work. C. G. J. acknowledges the support by Rackham Graduate Student Research Grant from the University of Michigan.

Return