Journal Home > Volume 12 , Issue 9

The use of TiO2 as an anode in rechargeable sodium-ion batteries (NIBs) is hampered by intrinsic low electronic conductivity of TiO2 and inferior electrode kinetics. Here, a high-performance TiO2 electrode for NIBs is presented by designing a multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies (Cu-MPTO). The in-situ grown well-dispersed copper nanodots of about 3 nm on TiO2 surface could significantly enhance electronic conductivity of the TiO2 fibers. The one-dimensional multichannel porous structure could facilitate the electrolyte to soak in, leading to short transport path of Na+ through carbon toward the TiO2 nanoparticle. The Cu2+-doping induced oxygen vacancies could decrease the bandgap of TiO2, resulting in easy electron trapping. With this strategy, the Cu-MPTO electrodes render an outstanding rate performance for NIBs (120 mAh·g-1 at 20 C) and a superior cycling stability for ultralong cycle life (120 mAh·g-1 at 20 C and 96.5% retention over 2, 000 cycles). Density functional theory (DFT) calculations also suggest that Cu2+ doping can enhance the conductivity and electron transfer of TiO2 and lower the sodiation energy barrier. This strategy is confirmed to be a general process and could be extended to improve the performance of other materials with low electronic conductivity applied in energy storage systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Boosting the rate capability of multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies for sodium-ion batteries

Show Author's information Ying Wu1Zengxi Wei2Rui Xu1Yue Gong3Lin Gu3,4Jianmin Ma2Yan Yu1,5,6( )
Department of Materials Science and EngineeringUniversity of Science and Technology of ChinaKey Laboratory of Materials for Energy ConversionChinese Academy of Sciences (CAS)Hefei230026China
School of Physics and ElectronicsHunan UniversityChangsha410082China
Beijing Laboratory for Electron MicroscopyInstitute of PhysicsChinese Academy of Sciences (CAS)Beijing100190China
Collaborative Innovation Center of Quantum MatterBeijing100190China
State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefei230026China
Dalian National Laboratory for Clean Energy (DNL)Chinese Academy of Sciences (CAS)DalianChina

Abstract

The use of TiO2 as an anode in rechargeable sodium-ion batteries (NIBs) is hampered by intrinsic low electronic conductivity of TiO2 and inferior electrode kinetics. Here, a high-performance TiO2 electrode for NIBs is presented by designing a multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies (Cu-MPTO). The in-situ grown well-dispersed copper nanodots of about 3 nm on TiO2 surface could significantly enhance electronic conductivity of the TiO2 fibers. The one-dimensional multichannel porous structure could facilitate the electrolyte to soak in, leading to short transport path of Na+ through carbon toward the TiO2 nanoparticle. The Cu2+-doping induced oxygen vacancies could decrease the bandgap of TiO2, resulting in easy electron trapping. With this strategy, the Cu-MPTO electrodes render an outstanding rate performance for NIBs (120 mAh·g-1 at 20 C) and a superior cycling stability for ultralong cycle life (120 mAh·g-1 at 20 C and 96.5% retention over 2, 000 cycles). Density functional theory (DFT) calculations also suggest that Cu2+ doping can enhance the conductivity and electron transfer of TiO2 and lower the sodiation energy barrier. This strategy is confirmed to be a general process and could be extended to improve the performance of other materials with low electronic conductivity applied in energy storage systems.

Keywords: sodium ion batteries, density functional theory (DFT) calculations, multichannel porous TiO2 nanofibers, Cu nanodots, Cu2+ doping

References(75)

1

Fang, Y. J.; Yu, X. Y.; Lou, X. W. A practical high-energy cathode for sodium-ion batteries based on uniform P2-Na0.7CoO2. microspheres. Angew. Chem. , Int. Ed. 2017, 56, 5801–5805.

2

Qiu, S.; Xiao, L. F.; Sushko, M. L.; Han, K. S.; Shao, Y. Y.; Yan, M. Y.; Liang, X. M.; Mai, L. Q.; Feng, J. W.; Cao, Y. L. et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 2017, 7, 1700403.

3

Liu, H.; Liu, X. X.; Li, W.; Guo, X.; Wang, Y.; Wang, G. X.; Zhao, D. Y. Porous carbon composites for next generation rechargeable lithium batteries. Adv. Energy Mater. 2017, 7, 1700283.

4

Zhao, J.; Zhao, L. W.; Dimov, N.; Okada S.; Nishida, T. Electrochemical and thermal properties of α-NaFeO2 cathode for Na-ion batteries. J. Electrochem. Soc. 2013, 160, A3077–A3081.

5

Fang, C.; Huang, Y. H.; Zhang, W. X.; Han, J. T.; Deng, Z.; Cao, Y. L.; Yang, H. X. Routes to high energy cathodes of sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1501727.

6

Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.

7

Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. V.; Yang, Z. G.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787.

8

Jiang, Y.; Wu, Y.; Chen, Y. X.; Qi, Z. Y.; Shi, J. A.; Gu, L.; Yu, Y. Design nitrogen (N) and sulfur (S) co-doped 3D graphene network architectures for high-performance sodium storage. Small 2018, 14, 1703471.

9

Sangster, J. C-Na (carbon-sodium) system. J. Phase Equilib. Diff. 2007, 28, 571–579.

10

Stevens, D.; Dahn, J. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271–1273.

11

Liu, J.; Yu, L. T.; Wu, C.; Wen, Y. R.; Yin, K. B.; Chiang, F. K.; Hu, R. Z.; Liu, J. W.; Sun, L. T.; Gu, L. et al. New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk–shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett. 2017, 17, 2034–2042.

12

Li, W. H.; Hu, S. H.; Luo, X. Y.; Li, Z. L.; Sun, X. Z.; Li, M. S.; Liu, F. F.; Yu, Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 2017, 29, 1605820.

13

Yang, X.; Zhang, R. Y.; Zhao, J.; Wei, Z. X.; Wang, D. X.; Bie, X. F.; Gao, Y.; Wang, J.; Du, F.; Chen, G. Amorphous tin-based composite oxide: A high-rate and ultralong-life sodium-ion-storage material. Adv. Energy Mater. 2018, 8, 1701827.

14

Jian, Z. L.; Zhao, B.; Liu, P.; Li, F. J.; Zheng, M. B.; Chen, M. W.; Shi, Y.; Zhou, H. S. Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem. Commun. 2014, 50, 1215–1217.

15

Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 2015, 27, 3305–3309.

16

Wei, X.; Li, W. H.; Shi, J. A.; Gu, L.; Yu, Y. FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage. ACS Appl. Mater. Interfaces 2015, 7, 27804–27809.

17

Wu, C.; Dou, S. X.; Yu, Y. The state and challenges of anode materials based on conversion reactions for sodium storage. Small 2018, 14, 1703671.

18

Wu, L. M.; Bresser, D.; Buchholz, D.; Giffin, G. A.; Castro, C. R.; Ochel, A.; Passerini, S. Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 2015, 5, 1401142.

19

Kim, K. T.; Ali, G.; Chung, K. Y.; Yoon, C. S.; Yashiro, H.; Sun, Y. K.; Lu, J.; Amine, K.; Myung, S. T. Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett. 2014, 14, 416–422.

20

Liu, H.; Li, W.; Shen, D. K.; Zhao, D. Y.; Wang, G. X. Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 2015, 137, 13161–13166.

21

Yu, L. T.; Liu, J.; Xu, X. J.; Zhang, L. G.; Hu, R. Z.; Liu, J. W.; Ouyang, L. Z.; Yang, L. C.; Zhu, M. Ilmenite nanotubes for high stability and high rate sodium-ion battery anodes. ACS Nano 2017, 11, 5120–5129.

22

Shin, J. Y.; Joo, J. H.; Samuelis, D.; Maier, J. Oxygen-deficient TiO2−δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem. Mater. 2012, 24, 543–551.

23

Zhu, X. M.; Li, Q.; Fang, Y. J.; Liu, X. L.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Graphene-modified TiO2 microspheres synthesized by a facile spray-drying route for enhanced sodium-ion storage. Part. Part. Syst. Char. 2016, 33, 545–552.

24

Mo, R. W.; Lei, Z. Y.; Sun, K. N.; Rooney, D. Facile synthesis of anatase TiO2 quantum-dot/graphene-nanosheet composites with enhanced electrochemical performance for lithium-ion batteries. Adv. Mater. 2014, 26, 2084–2088.

25

Peng, C. X.; Chen, B. D.; Qin, Y.; Yang, S. H.; Li, C. Z.; Zuo, Y. H.; Liu, S. Y.; Yang, J. H. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 2012, 6, 1074–1081.

26

Xu, G. L.; Xiao, L. S.; Sheng, T.; Liu, J. Z.; Hu, Y. X.; Ma, T. Y.; Amine, R.; Xie, Y. Y.; Zhang, X. Y.; Liu, Y. Z. et al. Electrostatic self-assembly enabling integrated bulk and interfacial sodium storage in 3D titania-graphene hybrid. Nano Lett. 2018, 18, 336–346.

27

Nong, S. Y.; Dong, W. J.; Yin, J. W.; Dong, B. W.; Lu, Y.; Yuan, X. T.; Wang, X.; Bu, K. J.; Chen, M. Y.; Jiang, S. D. et al. Well-dispersed ruthenium in mesoporous crystal TiO2 as an advanced electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 5719–5727.

28

Li, C. C.; Wang, T.; Zhao, Z. J.; Yang, W. M.; Li, J. F.; Li, A.; Yang, Z. L.; Ozin, G. A.; Gong, J. L. Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes. Angew. Chem. , Int. Ed. 2018, 57, 5278–5282.

29

Khalid, N. R.; Ahmed, E.; Hong, Z. L.; Ahmad, M.; Zhang, Y. W.; Khalid, S. Cu-doped TiO2 nanoparticles/graphene composites for efficient visible-light photocatalysis. Ceram. Int. 2013, 39, 7107–7113.

30

Guo, Y. G.; Hu, Y. S.; Sigle, W.; Maier, J. Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks. Adv. Mater. 2007, 19, 2087–2091.

31

Yu, Y.; Yan, C. L.; Gu, L.; Lang, X. Y.; Tang, K.; Zhang, L.; Hou, Y.; Wang, Z. F.; Chen, M. W.; Schmidt, O. G. et al. Three-dimensional (3D) bicontinuous Au/amorphous-Ge thin films as fast and high-capacity anodes for lithium-ion batteries. Adv. Energy Mater. 2013, 3, 281–285.

32

Wu, Y.; Liu, X. W.; Yang, Z. Z.; Gu, L.; Yu, Y. Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries. Small 2016, 12, 3522–3529.

33

Wu, Y.; Jiang, Y.; Shi, J. N.; Gu, L.; Yu, Y. Multichannel porous TiO2 hollow nanofibers with rich oxygen vacancies and high grain boundary density enabling superior sodium storage performance. Small 2017, 13, 1700129.

34

Zhang, Y.; Ding, Z. Y.; Foster, C. W.; Banks, C. E.; Qiu, X. Q.; Ji, X. B. Oxygen vacancies evoked blue TiO2(B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv. Funct. Mater. 2017, 27, 1700856.

35

Ni, J. F.; Fu, S. D.; Wu, C.; Maier, J.; Yu, Y.; Li, L. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv. Mater. 2016, 28, 2259–2265.

36

Ni, J. F.; Fu, S. D.; Yuan, Y. F.; Ma, L.; Jiang, Y.; Li, L.; Lu, J. Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation. Adv. Mater. 2018, 30, 1704337.

37

Choudhury, B.; Dey, M.; Choudhury, A. Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles. Int. Nano Lett. 2013, 3, 25.

38

Hong, Y. J.; Yoon, J. W.; Lee, J. H.; Kang, Y. C. A new concept for obtaining SnO2 fiber-in-tube nanostructures with superior electrochemical properties. Chem. —Eur. J. 2015, 21, 371–376.

39

Peng, S. J.; Li, L. L.; Hu, Y. X.; Srinivasan, M.; Cheng, F. Y.; Chen, J.; Ramakrishna, S. Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano 2015, 9, 1945–1954.

40

Zhang, G. Q.; Xia, B. Y.; Xiao, C.; Yu, L.; Wang, X.; Xie, Y.; Lou, X. W. General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries. Angew. Chem. , Int. Ed. 2013, 52, 8643–8647.

41

Xu, G. B.; Li, W.; Yang, L. W.; Wei, X. L.; Ding, J. W.; Zhong, J. X.; Chu, P. K. Highly-crystalline ultrathin Li4Ti5O12 nanosheets decorated with silver nanocrystals as a high-performance anode material for lithium ion batteries. J. Power Sources 2015, 276, 247–254.

42

Krajewski, M.; Michalska, M.; Hamankiewicz, B.; Ziolkowska, D.; Korona, K. P.; Jasinski, J. B.; Kaminska, M.; Lipinska, L.; Czerwinski, A. Li4Ti5O12 modified with Ag nanoparticles as an advanced anode material in lithium-ion batteries. J. Power Sources 2014, 245, 764–771.

43

Liu, Z. M.; Zhang, N. Q.; Wang, Z. J.; Sun, K. N. Highly dispersed Ag nanoparticles (< 10 nm) deposited on nanocrystalline Li4Ti5O12 demonstrating high-rate charge/discharge capability for lithium-ion battery. J. Power Sources 2012, 205, 479–482.

DOI
44

Hou, J. G.; Sun, Y. Q.; Wu, Y. Z.; Cao, S. Y.; Sun, L. C. Promoting active sites in core–shell nanowire array as Mott–Schottky electrocatalysts for efficient and stable overall water splitting. Adv. Funct. Mater. 2018, 28, 1704447.

45

Valero, J. M.; Obregón, S.; Colón, G. Active site considerations on the photocatalytic H2 evolution performance of Cu-Doped TiO2 obtained by different doping methods. ACS Catal. 2014, 4, 3320–3329.

46

Zhang, J. Z.; Zhang, J.; Bao, T. Z.; Xie, X. H.; Xia, B. J. Electrochemical and stress characteristics of SiO/Cu/expanded graphite composite as anodes for lithium ion batteries. J. Power Sources 2017, 348, 16–20.

47

Chen, J.; Song, W. X.; Hou, H. S.; Zhang, Y.; Jing, M. J.; Jia, X. N.; Ji, X. B. Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries. Adv. Funct. Mater. 2015, 25, 6793–6801.

48

Feng, J. X.; Wu, J. Q.; Tong, Y. X.; Li, G. R. Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption. J. Am. Chem. Soc. 2018, 140, 610–617.

49

Ni, D. W.; Shen, H. Y.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Synthesis of high efficient Cu/TiO2 photocatalysts by grinding and their size-dependent photocatalytic hydrogen production. Appl. Surf. Sci. 2017, 409, 241–249.

50

Su, T.; Yang, Y. L.; Na, Y.; Fan, R. Q.; Li, L.; Wei, L. G.; Yang, B.; Cao, W. W. An insight into the role of oxygen vacancy in hydrogenated TiO2 nanocrystals in the performance of dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2015, 7, 3754–3763.

51

Grunin, V. S.; Davtyan, G. D.; Ioffe, V. A.; Patrina, I. B. EPR of Cu2+ and radiation centres in anatase (TiO2). Phys. Status Solidi 1976, 77, 85–92.

52

You, M.; Kim, T. G.; Sung, Y. M. Synthesis of cu-doped TiO2 nanorods with various aspect ratios and dopant concentrations. Cryst. Growth Des. 2009, 10, 983–987.

53

Bensouici, F.; Bououdina, M.; Dakhel, A. A.; Tala-Ighil, R.; Tounane, M.; Iratni, A.; Souier, T.; Liu, S.; Cai, W. Optical, structural and photocatalysis properties of Cu-doped TiO2 thin films. Appl. Surf. Sci. 2017, 395, 110–116.

54

Xu, B.; Dong, L.; Chen, Y. Influence of CuO loading on dispersion and reduction behavior of CuO/TiO2 (anatase) system. J. Chem. Soc. Faraday Trans. 1998, 94, 1905–1909.

55

Kittel, C. Introduction to Solid State Physics, 7th ed.; Wiley: New York, 1996.

56

Zhou, W.; Li, W.; Wang, J. Q.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K. F.; Wang, L.; Fu, H. G.; Zhao, D. Y. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 2014, 136, 9280–9283.

57

Aguilar, T.; Navas, J.; Alcántara, R.; Fernández-Lorenzo, C.; Gallardo, J. J.; Blanco, G.; Martín-Calleja, J. A route for the synthesis of Cu-doped TiO2 nanoparticles with a very low band gap. Chem. Phys. Lett. 2013, 571, 49–53.

58

Shah, M. W.; Zhu, Y. Q.; Fan, X. Y.; Zhao, J.; Li, Y. X.; Asim, S.; Wang, C. Y. Facile synthesis of defective TiO2−x nanocrystals with high surface area and tailoring bandgap for visible-light photocatalysis. Sci. Rep. 2015, 5, 15804.

59

Fang, W. Z.; Zhou, Y.; Dong, C. C.; Xing, M. Y.; Zhang, J. L. Enhanced photocatalytic activities of vacuum activated TiO2 catalysts with Ti3+ and N co-doped. Catal. Today 2016, 266, 188–196.

60

Jin, Z.; Liu, C.; Qi, K.; Cui, X. Q. Photo-reduced Cu/CuO nanoclusters on TiO2 nanotube arrays as highly efficient and reusable catalyst. Sci. Rep. 2017, 7, 39695.

61

Oh, S. M.; Hwang, J. Y.; Yoon, C. S.; Lu, J.; Amine, K.; Belharouak, I.; Sun, Y. K. High electrochemical performances of microsphere C-TiO2 anode for sodium-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 11295–11301.

62

Wang, W. S.; Sa, Q. N.; Chen, J. H.; Wang, Y.; Jung, H.; Yin, Y. D. Porous TiO2/C nanocomposite shells as a high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 6478–6483.

63

Xu, Y.; Zhou, M.; Wen, L. Y.; Wang, C. L.; Zhao, H. P.; Mi, Y.; Liang, L. Y.; Fu, Q.; Wu, M. H.; Lei, Y. Highly ordered three-dimensional Ni-TiO2 nanoarrays as sodium ion battery anodes. Chem. Mater. 2015, 27, 4274–4280.

64

Jiang, Y.; Yang, Z. Z.; Li, W. H.; Zeng, L. C.; Pan, F. S.; Wang, M.; Wei, X.; Hu, G. T.; Gu, L.; Yu, Y. Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium- ion batteries. Adv. Energy Mater. 2015, 5, 1402104.

65

Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene- coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929.

66

Zhou, M.; Xu, Y.; Xiang, J. X.; Wang, C. L.; Liang, L. Y.; Wen, L. Y.; Fang, Y. G.; Mi, Y.; Lei, Y. Sodium-ion batteries: Understanding the orderliness of atomic arrangement toward enhanced sodium storage (Adv. Energy Mater. 23/2016). Adv. Energy Mater. 2016, 6, 1600448.

67

Zhu, Y.; Peng, L. L.; Chen, D. H.; Yu, G. H. Intercalation pseudocapacitance in ultrathin VOPO4 nanosheets: Toward high-rate alkali-ion-based electrochemical energy storage. Nano Lett. 2015, 16, 742–747.

68

Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

69

Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.

70

Chen, Z.; Augustyn, V.; Jia, X. L.; Xiao, Q. F.; Dunn, B.; Lu, Y. F. High- performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 2012, 6, 4319–4327.

71

Zhu, Y. E.; Yang, L. P.; Sheng, J.; Chen, Y. N.; Gu, H. C.; Wei, J. P.; Zhou, Z. Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv. Energy Mater. 2017, 7, 1701222.

72

He, H. N.; Huang, D.; Pang, W. K.; Sun, D.; Wang, Q.; Tang, Y. G.; Ji, X. B.; Guo, Z. P.; Wang, H. Y. Plasma-induced amorphous shell and deep cation-site S doping endow TiO2 with extraordinary sodium storage performance. Adv. Mater. 2018, 30, 1801013.

73

Xu, Z. L.; Lim, K.; Park, K. Y.; Yoon, G.; Seong, W. M.; Kang, K. Engineering solid electrolyte interphase for pseudocapacitive anatase TiO2 anodes in sodium-ion batteries. Adv. Funct. Mater. 2018, 28, 1802099.

74

Zhang, Y.; Wang, C. W.; Hou, H. S.; Zou, G. Q.; Ji, X. B. Nitrogen doped/ carbon tuning yolk-like TiO2 and its remarkable impact on sodium storage performances. Adv. Energy Mater. 2017, 7, 1600173.

75

Zhang, Y.; Foster, C. W.; Banks, C. E.; Shao, L. D.; Hou, H. S.; Zou, G. Q.; Chen, J.; Huang, Z. D.; Ji, X. B. Graphene-rich wrapped petal-like rutile TiO2 tuned by carbon dots for high-performance sodium storage. Adv. Mater. 2016, 28, 9391–9399.

File
12274_2018_2248_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 October 2018
Revised: 13 November 2018
Accepted: 16 November 2018
Published: 13 December 2018
Issue date: September 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the National Key R & D Research Program of China (Nos. 2018YFB0905400 and 2016YFB0100305), the National Natural Science Foundation of China (Nos. 51622210 and 51872277), the Fundamental Research Funds for the Central Universities (No. WK3430000004), and the DNL cooperation Fund, CAS (No. DNL180310).

Return