Journal Home > Volume 12 , issue 3

Here, the structural transformations of H4ETTC induced by coronene (COR) and selective adsorption behaviors of COR in different templates were investigated by scanning tunnelling microscope (STM). It was discovered that the assembled architecture of H4ETTC at the HOPG/ heptanoic acid interface depended on the concentration of COR, and the clusters of COR were obtained in the kagomé nanoporous network of H4ETTC molecules at a high concentration of COR solution. In addition, COR clusters can also be formed in the hexagonal porous structure of hexaphenylbenzene (HPB) molecules modified by alkyl chains at the HOPG/heptanoic acid interface. When both H4ETTC and HPB assembly structures, based on hydrogen bonding and van der Waals force respectively, were selected as the host templates, COR showed selectivity for HPB template to form HPB/COR hexagonal host–guest architecture. Density functional theory (DFT) calculations were also performed to disclose the mechanisms involved.


menu
Abstract
Full text
Outline
References
Electronic supplementary material
About this article
Guest selectivity in the supramolecular host networks fabricated by van der Waals force and hydrogen bond
Show Author's information Xuan Peng1,3,§Yanfang Geng1,3,§Min Zhang2Faliang Cheng2( )Linxiu Cheng1,3Ke Deng1,3( )Qingdao Zeng1,2,3( )
CAS Key Laboratory of Standardization and Measurement for Nanotechnology,CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), No.11 ZhongguancunBeiyitiao,Beijing,100190,China;
Guangdong Engineering and Technology Research Center for Advanced Nanomaterials,School of Environment and Civil Engineering, Dongguan University of Technology,Dongguan,523808,China;
Center of Materials Science and Optoelectonics Engineering,University of Chinese Academy of Sciences,Beijing,100049,China;

§ Xuan Peng and Yanfang Geng contributed equally to this work.

Abstract

Here, the structural transformations of H4ETTC induced by coronene (COR) and selective adsorption behaviors of COR in different templates were investigated by scanning tunnelling microscope (STM). It was discovered that the assembled architecture of H4ETTC at the HOPG/ heptanoic acid interface depended on the concentration of COR, and the clusters of COR were obtained in the kagomé nanoporous network of H4ETTC molecules at a high concentration of COR solution. In addition, COR clusters can also be formed in the hexagonal porous structure of hexaphenylbenzene (HPB) molecules modified by alkyl chains at the HOPG/heptanoic acid interface. When both H4ETTC and HPB assembly structures, based on hydrogen bonding and van der Waals force respectively, were selected as the host templates, COR showed selectivity for HPB template to form HPB/COR hexagonal host–guest architecture. Density functional theory (DFT) calculations were also performed to disclose the mechanisms involved.

Keywords: selective adsorption, COR, host–guest architecture
Received: 28 August 2018 Revised: 22 October 2018 Accepted: 13 November 2018 Published: 12 December 2018 Issue date: March 2019
References(35)
1

Spillmann, H.; Kiebele, A.; Stöhr, M.; Jung, T. A.; Bonifazi, D.; Cheng, F.; Diederich, F. A two-dimensional porphyrin-based porous network featuring communicating cavities for the templated complexation of fullerenes. Adv. Mater. 2006, 18, 275-279.

2

Madueno, R.; Räisänen, M. T.; Silien, C.; Buck, M. Functionalizing hydrogen-bonded surface networks with self-assembled monolayers. Nature 2008, 454, 618-621.

3

Adisoejoso, J.; Tahara, K.; Okuhata, S.; Lei, S. B.; Tobe, Y.; De Feyter, S. Two-dimensional crystal engineering: A four-component architecture at a liquid-solid interface. Angew. Chem. 2009, 121, 7489-7493.

4

Chen, T.; Chen, Q.; Zhang, X.; Wang, D.; Wan, L. -J. Chiral kagome network from thiacalix[4]arene tetrasulfonate at the interface of aqueous solution/Au(111) surface: An in situ electrochemical scanning tunneling microscopy study. J. Am. Chem. Soc. 2010, 132, 5598-5599.

5

Liu, J.; Chen, T.; Deng, X.; Wang, D.; Pei, J.; Wan, L. -J. Chiral hierarchical molecular nanostructures on two-dimensional surface by controllable trinary self-assembly. J. Am. Chem. Soc. 2011, 133, 21010-21015.

6

Velpula, G.; Takeda, T.; Adisoejoso, J.; Inukai, K.; Tahara, K.; Mali, K. S.; Tobe, Y.; De Feyter, S. On the formation of concentric 2D multicomponent assemblies at the solution-solid interface. Chem. Commun. 2017, 53, 1108-1111.

7

Chen, T.; Pan, G. -B.; Wettach, H.; Fritzsche, M.; Höger, S.; Wan, L. -J.; Yang, H. -B.; Northrop, B. H.; Stang, P. J. 2D assembly of metallacycles on hopg by shape-persistent macrocycle templates. J. Am. Chem. Soc. 2010, 132, 1328-1333.

8

Pan, G. -B.; Cheng, X. -H.; Höger, S.; Freyland, W. 2D supramolecular structures of a shape-persistent macrocycle and co-deposition with fullerene on HOPG. J. Am. Chem. Soc. 2006, 128, 4218-4219.

9

Shen, M. Q.; Luo, Z. Y.; Zhang, S. Q.; Wang, S.; Cao, L. L.; Geng, Y. F.; Deng, K.; Zhao, D. H.; Duan, W. B.; Zeng, Q. D. A size, shape and concentration controlled self-assembling structure with host-guest recognition at the liquid-solid interface studied by STM. Nanoscale 2016, 8, 11962-11968.

10

Lei, S. B.; Tahara, K.; Feng, X. L.; Furukawa, S.; De Schryver, F. C.; Müllen, K.; Tobe, Y.; De Feyter, S. Molecular clusters in two-dimensional surface-confined nanoporous molecular networks: Structure, rigidity, and dynamics. J. Am. Chem. Soc. 2008, 130, 7119-7129.

11

Gruber, K.; Rohr, C.; Scherer, L. J.; Malarek, M. S.; Constable, E. C.; Hermann, B. A. A versatile fréchet-dendron compound unifies host-guest and templated heterogeneous self-assembly. Adv. Mater. 2011, 23, 2195-2198.

12

MacLeod, J. M.; Ivasenko, O.; Fu, C. Y.; Taerum, T.; Rosei, F.; Perepichka, D. F. Supramolecular ordering in oligothiophene−fullerene monolayers. J. Am. Chem. Soc. 2009, 131, 16844-16850.

13

Ghijsens, E.; Cao, H.; Noguchi, A.; Ivasenko, O.; Fang, Y.; Tahara, K.; Tobe, Y.; De Feyter, S. Towards enantioselective adsorption in surface-confined nanoporous systems. Chem. Commun. 2015, 51, 4766-4769.

14

Medeiros, P. V. C.; Gueorguiev, G. K.; Stafström, S. Bonding, charge rearrangement and interface dipoles of benzene, graphene, and PAH molecules on Au(111) and Cu(111). Carbon 2015, 81, 620-628.

15

Tahara, K.; Nakatani, K.; Iritani, K.; De Feyter, S.; Tobe, Y. Periodic functionalization of surface-confined pores in a two-dimensional porous network using a tailored molecular building block. ACS Nano 2016, 10, 2113-2120.

16

Tahara, K.; Inukai, K.; Adisoejoso, J.; Yamaga, H.; Balandina, T.; Blunt, M. O.; De Feyter, S.; Tobe, Y. Tailoring surface-confined nanopores with photoresponsive groups. Angew. Chem., Int. Ed. 2013, 52, 8373-8376.

17

Zhang, S. -Q.; Liu, Z. -Y.; Fu, W. -F.; Liu, F.; Wang, C. -M.; Sheng, C. -Q.; Wang, Y. -F.; Deng, K.; Zeng, Q. -D.; Shu, L. -J. et al. Donor-acceptor conjugated macrocycles: Synthesis and host-guest coassembly with fullerene toward photovoltaic application. ACS Nano 2017, 11, 11701-11713.

18

Mena-Osteritz, E.; Bäuerle, P. Complexation of C60 on a cyclothiophene monolayer template. Adv. Mater. 2006, 18, 447-451.

19

Zhang, X.; Chen, T.; Yan, H. -J.; Wang, D.; Fan, Q. -H.; Wan, L. -J.; Ghosh, K.; Yang, H. -B.; Stang, P. J. Engineering of linear molecular nanostructures by a hydrogen-bond-mediated modular and flexible host-guest assembly. ACS Nano 2010, 4, 5685-5692.

20

Miao, X. R.; Xu, L.; Li, Y. J.; Li, Z. M.; Zhou, J.; Deng, W. L. Tuning the packing density of host molecular self-assemblies at the solid-liquid interface using guest molecule. Chem. Commun. 2010, 46, 8830-8832.

21

Adisoejoso, J.; Tahara, K.; Okuhata, S.; Lei, S. B.; Tobe, Y.; De Feyter, S. Two-dimensional crystal engineering: A four-component architecture at a liquid-solid interface. Angew. Chem., Int. Ed. 2009, 48, 7353-7357.

22

Wu, J. T.; Li, J. X.; Dong, M. Q.; Miao, K.; Miao, X. R.; Wu, Y. C.; Deng, W. L. Solvent effect on host-guest two-dimensional self-assembly mediated by halogen bonding. J. Phys. Chem. C 2018, 122, 22597-22604.

23

Shen, Y. T.; Zeng, L. J.; Lei, D.; Zhang, X. M.; Deng, K.; Feng, Y. Y.; Feng, W.; Lei, S. B.; Li, S. F.; Gan, L. H. et al. Competitive adsorption and dynamics of guest molecules in 2D molecular sieves. J. Mater. Chem. 2011, 21, 8787-8791.

24

Shen, Y. -T.; Guan, L.; Zhu, X. -Y.; Zeng, Q. -D.; Wang, C. Submolecular observation of photosensitive macrocycles and their isomerization effects on host−guest network. J. Am. Chem. Soc. 2009, 131, 6174-6180.

25

Geng, Y. F.; Liu, M. Q.; Xue, J. D.; Xu, P.; Wang, Y. F.; Shu, L. J.; Zeng, Q. D.; Wang, C. A template-confined fabrication of controllable gold nanoparticles based on the two-dimensional nanostructure of macrocycles. Chem. Commun. 2015, 51, 6820-6823.

26

Shen, Y. -T.; Deng, K.; Zhang, X. -M.; Lei, D.; Xia, Y.; Zeng, Q. -D.; Wang, C. Selective and competitive adsorptions of guest molecules in phase-separated networks. J. Phys. Chem. C 2011, 115, 19696-19701.

27

Adisoejoso, J.; Tahara, K.; Lei, S. B.; Szabelski, P.; Rżysko, W.; Inukai, K.; Blunt, M. O.; Tobe, Y.; De Feyter, S. One building block, two different nanoporous self-assembled monolayers: A combined STM and Monte Carlo study. ACS Nano 2012, 6, 897-903.

28

Ghijsens, E.; Ivasenko, O.; Tahara, K.; Yamaga, H.; Itano, S.; Balandina, T.; Tobe, Y.; De Feyter, S. A tale of tails: Alkyl chain directed formation of 2D porous networks reveals odd-even effects and unexpected bicomponent phase behavior. ACS Nano 2013, 7, 8031-8042.

29

Ma, Z.; Wang, Y. -Y.; Wang, P.; Huang, W.; Li, Y. -B.; Lei, S. -B.; Yang, Y. -L.; Fan, X. -L.; Wang, C. Star-shaped oligofluorenes end-capped with carboxylic groups: Syntheses and self-assembly at the liquid-solid interface. ACS Nano 2007, 1, 160-167.

30

Zhao, H. L.; Song, X.; Aslan, H.; Liu, B.; Wang, J. G.; Wang, L.; Besenbacher, F.; Dong, M. D. Self-assembly of hydrogen-bonded supramolecular complexes of nucleic-acid-base and fatty-acid at the liquid-solid interface. Phys. Chem. Chem. Phys. 2016, 18, 14168-14171.

31

Chang, S. Q.; Liu, R. C.; Wang, L. C.; Li, M.; Deng, K.; Zheng, Q. Y.; Zeng, Q. D. Formation of ordered coronene clusters in template utilizing the structural transformation of hexaphenylbenzene derivative networks on graphite surface. ACS Nano 2016, 10, 342-348.

32

Zhang, R.; Wang, L. -C.; Li, M.; Zhang, X. -M.; Li, Y. -B.; Shen, Y.T.; Zheng, Q. -Y.; Zeng, Q. -D.; Wang, C. Heterogeneous bilayer molecular structure at a liquid-solid interface. Nanoscale 2011, 3, 3755-3759.

33

Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756-7764.

34

Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244-13249.

35

Peng, X.; Cheng, L. X.; Zhu, X. Y.; Geng, Y. F.; Zhao, F. Y.; Hu, K. D.; Guo, X.; Deng, K.; Zeng, Q. D. Pyridine-induced interfacial structural transformation of tetraphenylethylene derivatives investigated by scanning tunneling microscopy. Nano Res. 2018, 11, 5823-5834.

File
12274_2018_2247_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 28 August 2018
Revised: 22 October 2018
Accepted: 13 November 2018
Published: 12 December 2018
Issue date: March 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (Nos. 2016YFA0200700 and 2017YFA0205000) and the National Natural Science Foundation of China (Nos. 21472029 and 21773041).

Rights and permissions

Reprints and Permission requests may be sought directly from editorial office.
Email: nanores@tup.tsinghua.edu.cn

Return