Journal Home > Volume 12 , Issue 4

Recovered carbon black (rCB), a very economical and abundance source of material, is transformed into dazzling multicolour fluorescence and visual display for the first time by way of a scanning focused laser treatment. This laser-initiated process is both straightforward and versatile, catering to both micro- and macro-scopic patterning with the sample in ambient or helium environment. The observed phenomenon is attributed to both chemical and structural induced colouration of rCB powder. Chemically, carbon infusion of oxidised metal occurs when photothermal reaction takes place in ambient. After laser modification with the sample in helium environment, the powder not only fluoresces due to sulphur impurities, control annealing of these powders results in formation of periodic arrangements of carbon nanoparticles. The periodicity of these arrangement falls within the range of visible wavelength, hence contributing to the visually observable rainbow coloured rCB flakes. The patterned sample is also transferrable using PDMS stamps. This in turn broadens the application of this material in flexible electronic devices/displays. Photocurrent measurements show most significant enhancement under yellow light illumination. Furthermore, in the presence of an applied potential, the fluorescence detected from the sample can easily be switched off. All in all, we present a simple process to add multiple functionalities to a material that is both inexpensive and sustainable.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Polychromic carbon black: Laser galvanized multicolour fluorescence display

Show Author's information Sharon Xiaodai Lim1Kae Lin Wong2Zheng Zhang3Neto Antonio H. Castro1,4Chorng-Haur Sow1,4( )
Department of Physics,National University of Singapore, 2 Science Drive 3,Singapore,117542,Singapore;
Department of Electrical and Electronic Engineering,Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras,Kajang,43000,Selangor, Malaysia;
Institute of Materials Research Engineering,A*Star (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis,Singapore,138634,Singapore;
Center for Advanced 2D Materials and Graphene Research Center,National University of Singapore, 6 Science Drive 2,Singapore,117546,Singapore;

Abstract

Recovered carbon black (rCB), a very economical and abundance source of material, is transformed into dazzling multicolour fluorescence and visual display for the first time by way of a scanning focused laser treatment. This laser-initiated process is both straightforward and versatile, catering to both micro- and macro-scopic patterning with the sample in ambient or helium environment. The observed phenomenon is attributed to both chemical and structural induced colouration of rCB powder. Chemically, carbon infusion of oxidised metal occurs when photothermal reaction takes place in ambient. After laser modification with the sample in helium environment, the powder not only fluoresces due to sulphur impurities, control annealing of these powders results in formation of periodic arrangements of carbon nanoparticles. The periodicity of these arrangement falls within the range of visible wavelength, hence contributing to the visually observable rainbow coloured rCB flakes. The patterned sample is also transferrable using PDMS stamps. This in turn broadens the application of this material in flexible electronic devices/displays. Photocurrent measurements show most significant enhancement under yellow light illumination. Furthermore, in the presence of an applied potential, the fluorescence detected from the sample can easily be switched off. All in all, we present a simple process to add multiple functionalities to a material that is both inexpensive and sustainable.

Keywords: flexible, photocurrent, recovered carbon black, laser modification, fluorescence emission

References(19)

1

Donnet, J. B.; Bansal, R. C.; Wang, M. J. Carbon Black: Science and Technology; Marcel Dekker, Inc. : New York, 1993.

2

ASTM D3849. Annual Book of ASTM standards; 1990, Vol. 09.01, pp 630.

3

Donnet, J. B.; Custodero, E. Ordered structures observed by scanning tunnelling microscopy at atomic scale on carbon black surfaces. Carbon 1992, 30, 813-815.

4

Chang, H.; Bard, A. J. Observation and characterization by scanning tunneling microscopy of structures generated by cleaving highly oriented pyrolytic graphite. Langmuir 1991, 7, 1143-1153.

5

Medalia, A. I. Electrical conduction in carbon black composites. Rubber Chem. Technol. 1986, 59, 432-454.

6

Aminabhavi, T. M.; Cassidy, P. E.; Thompson, C. M. Electrical resistivity of carbon-black-loaded rubbers. Rubber Chem. Technol. 1990, 63, 451-471.

7

McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom. Atmos. Chem. Phys. 2011, 11, 9037-9052.

8

Wang, Q. Y.; Huang, R. J.; Cao, J. J.; Tie, X. X.; Ni, H. Y.; Zhou, Y. Q.; Han, Y. M.; Hu, T. F.; Zhu, C. S.; Feng, T. et al. Black carbon aerosol in winter northeastern Qinghai-Tibetan Plateau, China: The source, mixing state and optical property. Atmos. Chem. Phys. 2015, 15, 13059-13069.

9

Hu, S. L.; Dong, Y. G.; Yang, J. L.; Liu, J.; Cao, S. R. Simultaneous synthesis of luminescent carbon nanoparticles and carbon nanocages by laser ablation of carbon black suspension and their optical limiting properties. J. Mater. Chem. 2012, 22, 1957-1961.

10

Pandey, N.; Srivastava, R. K.; Singh, M. K.; Singh, J. Optical properties of carbon nanodots synthesized by laser induced fragmentation of graphite powder suspended in water. Mater. Sci. Semicond. Process. 2014, 27, 150-153.

11

Hu, S. L.; Guo, Y.; Dong, Y. G.; Yang, J. L.; Liu, J.; Cao, S. R. Understanding the effects of the structures on the energy gaps in carbon nanoparticles from laser synthesis. J. Mater. Chem. 2012, 22, 12053-12057.

12

Li, Y.; Bi, J. R.; Liu, S.; Wang, H. T.; Yu, C. X.; Li, D. M.; Zhu, B. W.; Tan, M. Q. Presence and formation of fluorescence carbon dots in a grilled hamburger. Food Funct. 2017, 8, 2558-2565.

13

Yuan, F. L.; Li, S. H.; Fan, Z. T.; Meng, X. Y.; Fan, L. Z.; Yang, S. H. Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nanotoday 2016, 11, 565-586.

14

Yuan, F. L.; Yuan, T.; Sui, L. Z.; Wang, Z. B.; Xi, Z. F.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Tan, Z. A.; Chen, A. M. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nature Commun. 2018, 9, 2249.

15

Fan, H. B.; Yang, S. Y.; Zhang, P. F.; Wei, H. Y.; Liu, X. L.; Jiao, C. M.; Zhu, Q. S.; Chen, Y. H.; Wang, Z. G. Investigation of oxygen vacancy and interstitial oxygen defects in ZnO films by photoluminescence and x-ray photoelectron spectroscopy. Chin. Phys. Lett. 2007, 24, 2108-2111.

16

Rodnyi, P. A.; Khodyuk, I. V. Optical and luminescence properties of zinc oxide (Review). Opt. Spectrosc. 2011, 111, 776-785.

17

Lim, K. Y.; Linghu, J. J.; Chi, X.; Yuan, K. D.; Hew, K. M.; Zheng, M. R.; Yang, M.; Tok, E. S.; Rusydi, A.; Yu, X. J. et al. Tunable fluorescence properties due to carbon incorporation in zinc oxide nanowires. Adv. Opt. Mater. 2017, 5, 1700381.

18

Bondybey, V. E. Laser vaporization of silicon carbide. Lifetime and spectroscopy of silicon carbide (SiC2). J. Phys. Chem. 1982, 86, 3396-3399.

19

Guo, S. S.; Yang, M.; Chen, M.; Zhang, J.; Liu, K.; Ye, L.; Gu, W. Bioinspired synthesis of fluorescent calcium carbonate/carbon dot hybrid composites. Dalton Trans. 2015, 44, 8232-8237.

File
12274_2018_2239_MOESM2_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 August 2018
Revised: 30 October 2018
Accepted: 31 October 2018
Published: 19 November 2018
Issue date: April 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

The authors acknowledge the kind assistance from Dr. Wu Jing in creating the cover design submitted with this work.

Return