Journal Home > Volume 12 , Issue 2

A facile synthetic approach has been developed to prepare uniform and size-tunable spiky Au@Ag core-shell nanoparticles (NPs) to tailor the localized surface plasmon resonance (LSPR) properties. The gradual assembly of small Au nanocrystals allows the size of spiky Au NPs to be modulated from tens to several hundreds of nanometers by tuning the concentration of initial Au seeds and Au source; and the thickness of the Ag shell can be adjusted with stepwise reduction of Ag(Ⅰ) ions. The LSPR bands of such spiky Au@Ag core-shell NPs resemble those of pure spiky Au NP cores of similar sizes in near-infrared region, and increasing the Ag shell thickness results in a blue shift and broadening of the LSPR band in the near-infrared region. Additionally, the spiky Au@Ag core-shell NPs exhibit improved surface-enhanced Raman scattering (SERS) activity as compared to the bare spiky Au NPs and spherical Ag@Au NPs. This work has offered a facile route to synthesize plasmonic metal NPs with LSPR band in 650 to 800 nm that show strong enhancement of localized electromagnetic field, which provides an effective SERS substrate for SERS imaging and detection in biological fluids and tissues.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Plasmon-tunable Au@Ag core-shell spiky nanoparticles for surface-enhanced Raman scattering

Show Author's information Zhulin Huang1Guowen Meng1,2( )Xiaoye Hu1Qijun Pan1,2Dexian Huo1,2Hongjian Zhou1Yan Ke1Nianqiang Wu3( )
Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Technology,Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129,Hefei,230031,China;
University of Science and Technology of China,Hefei,230026,China;
Department of Mechanical and Aerospace Engineering,West Virginia University,P.O. Box 6106, Morgantown, WV,26506,USA;

Abstract

A facile synthetic approach has been developed to prepare uniform and size-tunable spiky Au@Ag core-shell nanoparticles (NPs) to tailor the localized surface plasmon resonance (LSPR) properties. The gradual assembly of small Au nanocrystals allows the size of spiky Au NPs to be modulated from tens to several hundreds of nanometers by tuning the concentration of initial Au seeds and Au source; and the thickness of the Ag shell can be adjusted with stepwise reduction of Ag(Ⅰ) ions. The LSPR bands of such spiky Au@Ag core-shell NPs resemble those of pure spiky Au NP cores of similar sizes in near-infrared region, and increasing the Ag shell thickness results in a blue shift and broadening of the LSPR band in the near-infrared region. Additionally, the spiky Au@Ag core-shell NPs exhibit improved surface-enhanced Raman scattering (SERS) activity as compared to the bare spiky Au NPs and spherical Ag@Au NPs. This work has offered a facile route to synthesize plasmonic metal NPs with LSPR band in 650 to 800 nm that show strong enhancement of localized electromagnetic field, which provides an effective SERS substrate for SERS imaging and detection in biological fluids and tissues.

Keywords: gold, silver, localized surface plasmon resonance, surface-enhanced Raman spectroscopy

References(43)

1

Lee, K. S.; El-Sayed, M. A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of Plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006, 110, 19220–19225.

2

Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed. M. A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008, 41, 1578–1586.

3

Huang, P.; Pandoli, O.; Wang, X. S.; Wang, Z.; Li, Z. M.; Zhang, C. L.; Chen, F.; Lin, J.; Cui, D. X.; Chen, X. Y. Chiral guanosine 5'-monophosphate-capped gold nanoflowers: Controllable synthesis, characterization, surface-enhanced Raman scattering activity, cellular imaging and photothermal therapy. Nano Res. 2012, 5, 630–639.

4

Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 2006, 311, 189–193.

5

Hao, C. L.; Xu, L. G.; Ma, W.; Wu, X. L.; Wang, L. B.; Kuang, H.; Xu, C. L. Unusual circularly polarized photocatalytic activity in nanogapped gold-silver chiroplasmonic nanostructures. Adv. Funct. Mater. 2015, 25, 5816–5822.

6

Wu, N. Q. Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: A review. Nanoscale 2018, 10, 2679–2696.

7

Hou, W. B.; Cronin, S. B. A review of surface Plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 2013, 23, 1612–1619.

8

Collins, G.; Holmes, J. D. Engineering metallic nanoparticles for enhancing and probing catalytic reactions. Adv. Mater. 2016, 28, 5689–5695.

9

Yang, S. K.; Lapsley, M. I.; Cao, B. Q.; Zhao, C. L.; Zhao, Y. H.; Hao, Q. Z.; Kiraly, B.; Scott, J.; Li, W. Z.; Wang, L. et al. Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition. Adv. Funct. Mater. 2013, 23, 720–730.

10

Li, M.; Cushing, S. K.; Wu, N. Q. Plasmon-enhanced optical sensors: A review. Analyst 2015, 140, 386–406.

11

Rodríguez-Lorenzo, L.; Álvarez-Puebla, R. A.; Pastoriza-Santos, I.; Mazzucco, S.; Stéphan, O.; Kociak, M.; Liz-Marzán, L. M.; Javier Garcia de Abajo, F. Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J. Am. Chem. Soc. 2009, 131, 4616–4618.

12

Prikhozhdenko, E. S.; Bratashov, D. N.; Gorin, D. A.; Yashchenok, A. M. Flexible surface-enhanced Raman scattering-active substrates based on nanofibrous membranes. Nano Res. 2018, 11, 4468–4488.

13

Langguth, L.; Punj, D.; Wenger, J.; Koenderink, A. F. Plasmonic band structure controls single-molecule fluorescence. ACS Nano 2013, 7, 8840–8848.

14

Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.

15

Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2008, 48, 60–103.

16

Yang, S. K.; Lei, Y. Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications. Nanoscale 2011, 3, 2768–2782.

17

Hamon, C.; Liz-Marzán, L. M. Hierarchical assembly of plasmonic nanoparticles. Chem. Eur. –J. 2015, 21, 9956–9963.

18

Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 2001, 105, 4065–4067.

19

Chen, L.; Ji, F.; Xu, Y.; He, L.; Mi, Y. F.; Bao, F.; Sun, B. Q.; Zhang, X. H.; Zhang, Q. High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 2014, 14, 7201–7206.

20

Qian, H. M.; Xu, M.; Li, X. W.; Ji, M. W.; Cheng, L.; Shoaib, A.; Liu, J. J.; Jiang, L.; Zhu, H. S.; Zhang, J. T. Surface micro/nanostructure evolution of Au-Ag alloy nanoplates: Synthesis, simulation, plasmonic photothermal and surface-enhanced Raman scattering applications. Nano Res. 2016, 9, 876–885.

21

Yang, Y.; Liu, J. Y.; Fu, Z. W.; Qin, D. Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity. J. Am. Chem. Soc. 2014, 136, 8153–8156.

22

Ruditskiy, A.; Xia, Y. N. Toward the synthesis of sub-15 nm Ag nanocubes with sharp corners and edges: The roles of heterogeneous nucleation and surface capping. J. Am. Chem. Soc. 2016, 138, 3161–3167.

23

Henzie, J.; Grünwald, M.; Widmer-Cooper, A.; Geissler, P. L.; Yang, P. D. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 2012, 11, 131–137.

24

Henzie, J.; Andrews, S. C.; Ling, X. Y.; Li, Z. Y.; Yang, P. D. Oriented assembly of polyhedral plasmonic nanoparticle clusters. Proc. Natl. Acad. Sci. USA 2013, 110, 6640–6645.

25

Hao, F.; Nehl, C. L.; Hafner, J. H.; Nordlander, P. Plasmon resonances of a gold nanostar. Nano Lett. 2007, 7, 729–732.

26

Sanchez-Gaytan, B. L.; Swanglap, P.; Lamkin, T. J.; Hickey, R. J.; Fakhraai, Z.; Link, S.; Park, S. J. Spiky gold nanoshells: Synthesis and enhanced scattering properties. J. Phys. Chem. C 2012, 116, 10318–10324.

27

Zhao, Y.; Sun, M. Z.; Ma, W.; Kuang, H.; Xu, C. L. Biological molecules-governed plasmonic nanoparticle dimers with tailored optical behaviors. J. Phys. Chem. Lett. 2017, 8, 5633–5642.

28

Li, M.; Cushing, S. K.; Zhang, J. M.; Lankford, J.; Aguilar, Z. P.; Ma, D. L.; Wu, N. Q. Shape-dependent surface-enhanced Raman scattering in gold-Raman-probe-silica sandwiched nanoparticles for biocompatible applications. Nanotechnology 2012, 23, 115501.

29

Barbosa, S.; Agrawal, A.; Rodríguez-Lorenzo, L.; Pastoriza-Santos, I.; Alvarez-Puebla, R. A.; Kornowski, A.; Weller, H.; Liz-Marzan, L. M. Tuning size and sensing properties in colloidal gold nanostars. Langmuir 2010, 26, 14943–14950.

30

Li, M.; Cushing, S. K.; Zhang, J. M.; Suri, S.; Evans, R.; Petros, W. P.; Gibson, L. F.; Ma, D. L.; Liu, Y. X.; Wu, N. Q. Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma. ACS Nano 2013, 7, 4967–4976.

31

Niu, W. X.; Chua, Y. A. A.; Zhang, W. Q.; Huang, H. J.; Lu, X. M. Highly symmetric gold nanostars: Crystallographic control and surface-enhanced Raman scattering property. J. Am. Chem. Soc. 2015, 137, 10460–10463.

32

Li, A. K.; Tang, L. J.; Song, D.; Song, S. S.; Ma, W.; Xu, L. G.; Kuang, H.; Wu, X. L.; Liu, L. Q.; Chen, X.; Xu, C. L. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1. Nanoscale 2016, 8, 1873–1878.

33

Sekhon, J. S.; Verma, S. S. Refractive index sensitivity analysis of Ag, Au, and Cu nanoparticles. Plasmonics 2011, 6, 311–317.

34

Ma, Y. Y.; Li, W. Y.; Cho, E. C.; Li, Z. Y.; Yu, T.; Zeng, J.; Xie, Z. X.; Xia, Y. N. Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. ACS Nano 2010, 4, 6725–6734.

35

Samal, A. K.; Polavarapu, L.; Rodal-Cedeira, S.; Liz-Marzán, L. M.; Pérez-Juste, J.; Pastoriza-Santos, I. Size tunable Au@Ag core-shell nanoparticles: Synthesis and surface-enhanced Raman scattering properties. Langmuir 2013, 29, 15076–15082.

36

Goodman, A. M.; Cao, Y.; Urban, C.; Neumann, O.; Ayala-Orozco, C.; Knight, M. W.; Joshi, A.; Nordlander, P.; Halas, N. J. The surprising in vivo instability of near-IR-absorbing hollow Au-Ag nanoshells. ACS Nano 2014, 8, 3222–3231.

37

Zhou, H. J.; Kim, J. P.; Bahng, J. H.; Kotov, N. A.; Lee, J. Self-assembly mechanism of spiky magnetoplasmonic supraparticles. Adv. Funct. Mater. 2014, 24, 1439–1448.

38

Huang, Z. L.; Lei, X.; Liu, Y.; Wang, Z. W.; Wang, X. J.; Wang, Z. M.; Mao, Q. H.; Meng, G. W. Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application. ACS Appl. Mater. Interfaces 2015, 7, 17247–17254.

39

Weaver, J. H.; Frederikse, H. P. R. Optical properties of selected elements. In CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data; 86th ed. Lide, D. R., Ed.; CRC Press: Boca Raton, 2005; pp 134–135.

40

Zhao, L. B.; Huang, Y. F.; Wu, D. Y.; Ren, B. Surface-enhanced Raman spectroscopy and plasmon-assisted photocatalysis of p-aminothiophenol. Acta Chim. Sin. 2014, 72, 1125–1138.

41

Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803.

42

Zhu, C. H.; Meng, G. W.; Zheng, P.; Huang, Q.; Li, Z. B.; Hu, X. Y.; Wang, X. J.; Huang, Z. L.; Li, F. D.; Wu, N. Q. A hierarchically ordered array of silver-nanorod bundles for surface-enhanced Raman scattering detection of phenolic pollutants. Adv. Mater. 2016, 28, 4871–4876.

43

Ma, L. W.; Huang, Y.; Hou, M. J.; Xie, Z.; Zhang, Z. J. Silver nanorods wrapped with ultrathin Al2O3 layers exhibiting excellent SERS sensitivity and outstanding SERS stability. Sci. Rep. 2015, 5, 12890.

File
12274_2018_2238_MOESM1_ESM.pdf (7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 September 2018
Revised: 20 October 2018
Accepted: 30 October 2018
Published: 21 November 2018
Issue date: February 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was financially supported by the National Basic Research Program of China (No. 2013CB934304), Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSW-SLH046), the CAS/SAFEA International Partnership Program for Creative Research Teams, the Natural Science Foundation of China (Nos. 21673245, 51632009, 51628202, 51472245 and 51671186), Hefei Institutes of Physical Sciences, CAS, and the Youth Innovation Promotion Association of CAS.

Return