AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Facile synthesis of ultrathin metal-organic framework nanosheets for Lewis acid catalysis

Xiaofei Zhang1,2,§Lin Chang2,§Zhongjie Yang2Yanan Shi2Chang Long1,2Jianyu Han2Binhao Zhang2Xueying Qiu2Guodong Li2( )Zhiyong Tang1,2( )
School of Materials Science and Engineering,Harbin Institute of Technology,Harbin,150080,China;
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication,CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology,Beijing,100190,China;

§ Xiaofei Zhang and Lin Chang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Ultrathin metal-organic framework (MOF) nanosheets are attracting great interest in catalysis due to their unique and intriguing two-dimensional (2D) features. Although many progresses have been achieved, it is still highly desirable to develop novel strategies for controllable synthesis of the well-defined ultrathin MOF nanosheets. Herein we report a polyvinylpyrrolidone (PVP)-assisted route to synthesize the ultrathin Ni-MOF nanosheets characteristic of 1.5 nm in thickness, in which PVP is reacted with 2-aminoterephthalic acid (H2BDC-NH2) via formation of C=N bond, followed by coordination with Ni2+ ions to form the ultrathin MOF nanosheets. Impressively, when used in the Knoevenagel condensation reactions of propane dinitrile with different aldehydes, ultrathin Ni-MOF nanosheets display the significantly enhanced catalytic activity and good stability in respect with the bulk Ni-MOF, mainly owing to the exposed active sites as well as facile mass transfer and diffusion of substrates and products.

Electronic Supplementary Material

Download File(s)
12274_2018_2235_MOESM1_ESM.pdf (1.6 MB)

References

1

Yaghi, O. M.; Li, H. L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 1995, 117, 10401–10402.

2

Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

3

Lu, W. G.; Wei, Z. W.; Gu, Z.-Y.; Liu, T.-F.; Park, J.; Park, J.; Tian, J.; Zhang, M. W.; Zhang, Q.; Gentle, T., Ⅲ. et al. Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 2014, 43, 5561–5593.

4

Helal, A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. Multivariate metal-organic frameworks. Nat. Sci. Rev. 2017, 4, 296–298.

5

Chen, L. Y.; Luque, R.; Li, Y. W. Controllable design of tunable nanostructures inside metal-organic frameworks. Chem. Soc. Rev. 2017, 46, 4614–4630.

6

Li, X. L.; van Zeeland, R.; Maligal-Ganesh, R. V.; Pei, Y. C.; Power, G.; Stanley, L.; Huang, W. Y. Impact of linker engineering on the catalytic activity of metal-organic frameworks containing Pd(Ⅱ)-bipyridine complexes. ACS Catal. 2016, 6, 6324–6328.

7

Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.

8

Hwang, Y. K.; Hong, D.-Y.; Chang, J.-S.; Jhung, S. H.; Seo, Y.-K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Férey, G. Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation. Angew. Chem., Int. Ed. 2008, 47, 4144–4148.

9

Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.

10

Peng, Y. W.; Huang, Y.; Zhu, Y. H.; Chen, B.; Wang, L. Y.; Lai, Z. C.; Zhang, Z. C.; Zhao, M. T.; Tan, C. L.; Yang, N. L. et al. Ultrathin two-dimensional covalent organic framework nanosheets: Preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 2017, 139, 8698–8704.

11

Dong, J. Q.; Zhang, K.; Li, X.; Qian, Y. H.; Zhu, H.; Yuan, D. Q.; Xu, Q.-H.; Jiang, J. W.; Zhao, D. Ultrathin two-dimensional porous organic nanosheets with molecular rotors for chemical sensing. Nat. Commun. 2017, 8, 1142.

12

Cao, L. Y.; Lin, Z. K.; Peng, F.; Wang, W. W.; Huang, R. Y.; Wang, C.; Yan, J. W.; Liang, J.; Zhang, Z. M.; Zhang, T. et al. Self-supporting metal-organic layers as single-site solid catalysts. Angew. Chem., Int. Ed. 2016, 55, 4962–4966.

13

Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 2100–2104.

14

Moon, H.; Seong, H.; Shin, W. C.; Park, W.-T.; Kim, M.; Lee, S.; Bong, J. H.; Noh, Y.-Y.; Cho, B. J.; Yoo, S. et al. Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics. Nat. Mater. 2015, 14, 628–635.

15

Kory, M. J.; Wörle, M.; Weber, T.; Payamyar, P.; van de Poll, S. W.; Dshemuchadse, J.; Trapp, N.; Schlüter, A. D. Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat. Chem. 2014, 6, 779–784.

16

Li, P. Z.; Maeda, Y.; Xu, Q. Top-down fabrication of crystalline metal– organic framework nanosheets. Chem. Commun. 2011, 47, 8436–8438.

17

Chandra, S.; Kandambeth, S.; Biswal, B. P.; Lukose, B.; Kunjir, S. M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 2013, 135, 17853–17861.

18

Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

19

Liu, W.; Luo, X.; Bao, Y.; Liu, Y. P.; Ning, G.-H.; Abdelwahab, I.; Li, L. J.; Nai, C. T.; Hu, Z. G.; Zhao, D. et al. A two-dimensional conjugated aromatic polymer via C–C coupling reaction. Nat. Chem. 2017, 9, 563–570.

20

Sahabudeen, H.; Qi, H. Y.; Glatz, B. A.; Tranca, D.; Dong, R. H.; Hou, Y.; Zhang, T.; Kuttner, C.; Lehnert, T.; Seifert, G. et al. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat. Commun. 2016, 7, 13461.

21

Weber, J.; Thomas, A. Toward stable interfaces in conjugated polymers: Microporous poly(p-phenylene) and poly(phenyleneethynylene) based on a spirobifluorene building block. J. Am. Chem. Soc. 2008, 130, 6334–6335.

22

Zhao, M. T.; Wang, Y. X.; Ma, Q. L.; Huang, Y.; Zhang, X.; Ping, J. F.; Zhang, Z. C.; Lu, Q. P.; Yu, Y. F.; Xu, H. et al. Ultrathin 2D metal-organic framework nanosheets. Adv. Mater. 2015, 27, 7372–7378.

23

Guo, J.; Zhang Y.; Zhu, Y. F.; Long, C.; Zhao, M. T.; He, M.; Zhang, X. F.; Lv, J. W.; Han, B.; Tang, Z. Y. Ultrathin chiral metal-organic-framework nanosheets for efficient enantioselective separation. Angew. Chem., Int. Ed. 2018, 130, 6989–6993.

24

Zhang, Z. C.; Chen, Y. F.; He, S.; Zhang, J. C.; Xu, X. B.; Yang, Y.; Nosheen, F.; Saleem, F.; He, W.; Wang, X. Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions. Angew. Chem., Int. Ed. 2014, 126, 12725–12729.

25

Yang, J.; Xiong, P. X.; Zheng, C.; Qiu, H. Y.; Wei, M. D. Metal-organic frameworks: A new promising class of materials for a high performance supercapacitor electrode. J. Mater. Chem. A 2014, 2, 16640–16644.

26

Sun, H.; Lian, Y. B.; Yang, C.; Xiong, L. K.; Qi, P. W.; Mu, Q. Q.; Zhao, X. H.; Guo, J.; Deng, Z.; Peng, Y. A hierarchical nickel-carbon structure templated by metal-organic frameworks for efficient overall water splitting. Energy Environ. Sci. 2018, 11, 2363–2371.

27

Gascon, J.; Aktay, U.; Hernandez-Alonso, M. D.; van Klink, G. P. M.; Kapteijn, F. Amino-based metal-organic frameworks as stable, highly active basic catalysts. J. Catal. 2009, 261, 75–87.

28

Shen, K.; Zhang, L.; Chen, X. D.; Liu, L. M.; Zhang, D. L.; Han, Y.; Chen, J. Y.; Long, J. L.; Luque, R.; Li, Y. W. et al. Ordered macro-microporous metal-organic framework single crystals. Science 2018, 359, 206–210.

29

Panchenko, V. N.; Matrosova, M. M.; Jeon, J.; Jun, J. W.; Timofeeva, M. N.; Jhung, S. H. Catalytic behavior of metal-organic frameworks in the Knoevenagel condensation reaction. J. Catal. 2014, 316, 251–259.

30

Opanasenko, M.; Dhakshinamoorthy, A.; Shamzhy, M.; Nachtigall, P.; Horáček, M.; Garcia, H; Čejka, J. Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catal. Sci. Technol. 2013, 3, 500–507.

31

Almáši, M.; Zeleňák, V.; Opanasenko, M.; Císařová, I. Ce(Ⅲ) and Lu(Ⅲ) metal-organic frameworks with Lewis acid metal sites: Preparation, sorption properties and catalytic activity in Knoevenagel condensation. Catal. Today 2015, 243, 184–194.

Nano Research
Pages 437-440
Cite this article:
Zhang X, Chang L, Yang Z, et al. Facile synthesis of ultrathin metal-organic framework nanosheets for Lewis acid catalysis. Nano Research, 2019, 12(2): 437-440. https://doi.org/10.1007/s12274-018-2235-1
Topics:

882

Views

84

Crossref

N/A

Web of Science

83

Scopus

0

CSCD

Altmetrics

Received: 12 October 2018
Revised: 23 October 2018
Accepted: 27 October 2018
Published: 19 November 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return