Journal Home > Volume 12 , Issue 2

The development of Pt-based core/shell nanoparticles represents an emerging class of electrocatalysts for fuel cells, such as methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). Here, we present a one-pot synthesis approach to prepare hexagonal PtBi/Pt core/shell nanostructure composed of an intermetallic Pt1Bi1 core and an ultrathin Pt shell with well-defined shape, size, and composition. The structure and the synergistic effect among different components enhanced their MOR and EOR performance. The optimized Pt2Bi nanoplates exhibit excellent mass activities in both MOR (4, 820 mA·mgPt–1) and EOR (5, 950 mA·mgPt–1) conducted in alkaline media, which are 6.15 times and 8.63 times higher than those of commercial Pt/C, respectively. Pt2Bi nanoplates also show superior operation durability to commercial Pt/C. This work may inspire the rational design and synthesis of Pt-based nanoparticles with improved performance for fuel cells and other applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Intermetallic PtBi core/ultrathin Pt shell nanoplates for efficient and stable methanol and ethanol electro-oxidization

Show Author's information Xiaolei YuanXiaojing JiangMuhan Cao( )Lei ChenKaiqi NieYong ZhangYong XuXuhui SunYanguang Li( )Qiao Zhang( )
Institute of Functional Nano and Soft Materials (FUNSOM),Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation Research, Soochow University, 199 Ren'ai Road,Suzhou,215123,China;

Abstract

The development of Pt-based core/shell nanoparticles represents an emerging class of electrocatalysts for fuel cells, such as methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). Here, we present a one-pot synthesis approach to prepare hexagonal PtBi/Pt core/shell nanostructure composed of an intermetallic Pt1Bi1 core and an ultrathin Pt shell with well-defined shape, size, and composition. The structure and the synergistic effect among different components enhanced their MOR and EOR performance. The optimized Pt2Bi nanoplates exhibit excellent mass activities in both MOR (4, 820 mA·mgPt–1) and EOR (5, 950 mA·mgPt–1) conducted in alkaline media, which are 6.15 times and 8.63 times higher than those of commercial Pt/C, respectively. Pt2Bi nanoplates also show superior operation durability to commercial Pt/C. This work may inspire the rational design and synthesis of Pt-based nanoparticles with improved performance for fuel cells and other applications.

Keywords: core–shell structure, intermetallics, nanoplates, methanol oxidation reaction, ethanol oxidation reaction

References(70)

1

Mao, J. J.; Chen, W. X.; He, D. S.; Wan, J. W.; Pei, J. J.; Dong, J. C.; Wang, Y.; An, P. F.; Jin, Z.; Xing, W. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, e1603068.

2

Liu, X. W.; Wang, W. Y.; Li, H.; Li, L. S.; Zhou, G. B.; Yu, R.; Wang, D. S.; Li, Y. D. One-pot protocol for bimetallic Pt/Cu hexapod concave nanocrystals with enhanced electrocatalytic activity. Sci. Rep. 2013, 3, 1404.

3

Kang, Y. J.; Pyo, J. B.; Ye, X. C.; Gordon, T. R.; Murray, C. B. Synthesis, shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt3Zn intermetallic nanocrystals. ACS Nano 2012, 6, 5642–5647.

4

Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

5

Yang, N. L.; Zhang, Z. C.; Chen, B.; Huang, Y.; Chen, J. Z.; Lai, Z. C.; Chen, Y.; Sindoro, M.; Wang, A. L.; Cheng, H. F. et al. Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Adv. Mater. 2017, 29, 1700769.

6

Huang, X. Q.; Zhao, Z. P.; Chen, Y.; Zhu, E. B.; Li, M. F.; Duan, X. F.; Huang, Y. A rational design of carbon-supported dispersive Pt-based octahedra as efficient oxygen reduction reaction catalysts. Energy Environ. Sci. 2014, 7, 2957–2962.

7

Chaudhari, N. K.; Joo, J.; Kwon, H.; Kim, B.; Kim, H. Y.; Joo, S. H.; Lee, K. Nanodendrites of platinum-group metals for electrocatalytic applications. Nano Res. 2018, 11, 6111–6140.

8

Xie, S. F.; Choi, S.; Lu, N.; Roling, L. T.; Herron, J. A.; Zhang, L.; Park, J.; Wang, J. G.; Kim, M. J.; Xie, Z. X. et al. Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Nano Lett. 2014, 14, 3570–3576.

9

Wang, X.; Vara, M.; Luo, M.; Huang, H. W.; Ruditskiy, A.; Park, J.; Bao, S. X.; Liu, J. Y.; Howe, J.; Chi, M. F. et al. Pd@Pt core–shell concave decahedra: A class of catalysts for the oxygen reduction reaction with enhanced activity and durability. J. Am. Chem. Soc. 2015, 137, 15036–15042.

10

Chen, Y.; Fan, Z. X.; Luo, Z. M.; Liu, X. Z.; Lai, Z. C.; Li, B.; Zong, Y.; Gu, L.; Zhang, H. High-yield synthesis of crystal-phase-heterostructured 4H/fcc Au@Pd core–shell nanorods for electrocatalytic ethanol oxidation. Adv. Mater. 2017, 29, 1701331.

11

Eid, K.; Wang, H. J.; He, P.; Wang, K. M.; Ahamad, T.; Alshehri, S. M.; Yamauchi, Y.; Wang, L. One-step synthesis of porous bimetallic PtCu nanocrystals with high electrocatalytic activity for methanol oxidation reaction. Nanoscale 2015, 7, 16860–16866.

12

Wu, F. X.; Zhang, D. T.; Peng, M. H.; Yu, Z. H.; Wang, X. Y.; Guo, G. S.; Sun, Y. G. Microfluidic synthesis enables dense and uniform loading of surfactant-free PtSn nanocrystals on carbon supports for enhanced ethanol oxidation. Angew. Chem., Int. Ed. 2016, 55, 4952–4956.

13

Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.

14

Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.

15

Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765–771.

16

Park, K. W.; Sung, Y. E.; Han, S. J.; Yun, Y.; Hyeon, T. Origin of the enhanced catalytic activity of carbon nanocoil-supported PtRu alloy electrocatalysts. J. Phys. Chem. B 2004, 108, 939–944.

17

Liu, Z. F.; Jackson, G. S.; Eichhorn, B. W. PtSn intermetallic, core–shell, and alloy nanoparticles as CO-tolerant electrocatalysts for H2 oxidation. Angew. Chem., Int. Ed. 2010, 49, 3173–3176.

18

Lu, Y. Z.; Jiang, Y. Y.; Chen, W. PtPd porous nanorods with enhanced electrocatalytic activity and durability for oxygen reduction reaction. Nano Energy 2013, 2, 836–844.

19

Feng, Q. C.; Zhao, S.; He, D. S.; Tian, S. B.; Gu, L.; Wen, X. D.; Chen, C.; Peng, Q; Wang, D. S.; Li, Y. D. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J. Am. Chem. Soc. 2018, 140, 2773–2776.

20

Liu, L. F.; Pippel, E.; Scholz, R.; Gösele, U. Nanoporous Pt-Co alloy nanowires: Fabrication, characterization, and electrocatalytic properties. Nano Lett. 2009, 9, 4352–4358.

21

Koh, S.; Leisch, J.; Toney, M. F.; Strasser, P. Structure-activity-stability relationships of Pt-Co alloy electrocatalysts in gas-diffusion electrode layers. J. Phys. Chem. C 2007, 111, 3744–3752.

22

Cui, Z. N.; Chen, H.; Zhao, M. T.; Marshall, D.; Yu, Y. C.; Abruña, H.; DiSalvo, F. J. Synthesis of structurally ordered Pt3Ti and Pt3V nanoparticles as methanol oxidation catalysts. J. Am. Chem. Soc. 2014, 136, 10206–10209.

23

Du, N. N.; Wang, C. M.; Long, R.; Xiong, Y. J. N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: Highly active and durable catalysts for oxygen reduction reaction. Nano Res. 2017, 10, 3228–3237.

24

Gu, J.; Lan, G. X.; Jiang, Y. Y.; Xu, Y. S.; Zhu, W.; Jin, C. H.; Zhang, Y. W. Shaped Pt-Ni nanocrystals with an ultrathin Pt-enriched shell derived from one-pot hydrothermal synthesis as active electrocatalysts for oxygen reduction. Nano Res. 2015, 8, 1480–1496.

25

Zhang, N.; Zhu, Y. M.; Shao, Q.; Zhu, X.; Huang, X. Q. Ternary PtNi/ PtxPb/Pt core/multishell nanowires as efficient and stable electrocatalysts for fuel cell reactions. J. Mater. Chem. A 2017, 5, 18977–18983.

26

Wang, H.; Xu, C. W.; Cheng, F. L.; Zhang, M.; Wang, S. Y.; Jiang, S. P. Pd/Pt core–shell nanowire arrays as highly effective electrocatalysts for methanol electrooxidation in direct methanol fuel cells. Electrochem. Commun. 2008, 10, 1575–1578.

27

Sasaki, K.; Naohara, H.; Cai, Y.; Choi, Y. M.; Liu, P.; Vukmirovic, M. B.; Wang, J. X.; Adzic, R. R. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew. Chem., Int. Ed. 2010, 49, 8602–8607.

28

Guo, S. J.; Fang, Y. X.; Dong, S. J.; Wang, E. K. High-efficiency and low-cost hybrid nanomaterial as enhancing electrocatalyst: Spongelike Au/Pt core/shell nanomaterial with hollow cavity. J. Phys. Chem. C 2007, 111, 17104–17109.

29

Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Ru-Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 2008, 7, 333–338.

30

van der Vliet, D. F.; Wang, C.; Li, D. G.; Paulikas, A. P.; Greeley, J.; Rankin, R. B.; Strmcnik, D.; Tripkovic, D.; Markovic, N. M.; Stamenkovic, V. R. Unique electrochemical adsorption properties of Pt-skin surfaces. Angew. Chem., Int. Ed. 2012, 51, 3139–3142.

31

Stamenkovic, V. R.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 2006, 128, 8813–8819.

32

Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J. B.; Wang, L. W.; Alivisatos, A. P. Colloidal nanocrystal heterostructures with linear and branched topology. Nature 2004, 430, 190–195.

33

Wang, D.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

34

Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J.-Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

35

Zhang, D. T.; Wu, F. X.; Peng, M. H.; Wang, X. Y.; Xia, D. G.; Guo, G. S. One-step, facile and ultrafast synthesis of phase-and size-controlled Pt-Bi intermetallic nanocatalysts through continuous-flow microfluidics. J. Am. Chem. Soc. 2015, 137, 6263–6269.

36

Shen, Y. Y.; Sun, Y.; Zhou, L. N.; Li, Y. J.; Yeung, E. S. Synthesis of ultrathin PtPdBi nanowire and its enhanced catalytic activity towards p-nitrophenol reduction. J. Mater. Chem. A 2014, 2, 2977–2984.

37

Du, W. X.; Su, D.; Wang, Q.; Frenkel, A. I.; Teng, X. W. Promotional effects of bismuth on the formation of platinum-bismuth nanowires network and the electrocatalytic activity toward ethanol oxidation. Cryst. Growth Des. 2011, 11, 594–599.

38

Simões, M.; Baranton, S.; Coutanceau, C. Influence of bismuth on the structure and activity of Pt and Pd nanocatalysts for the direct electrooxidation of NaBH4. Electrochim. Acta 2010, 56, 580–591.

39

Simões, M.; Baranton, S.; Coutanceau, C. Enhancement of catalytic properties for glycerol electrooxidation on Pt and Pd nanoparticles induced by Bi surface modification. Appl. Catal. B 2011, 110, 40–49.

40

Li, H. H.; Cui, C. H.; Zhao, S.; Yao, H. B.; Gao, M. R.; Fan, F. J.; Yu, S. H. Mixed-PtPd-shell PtPdCu nanoparticle nanotubes templated from copper nanowires as efficient and highly durable electrocatalysts. Adv. Energy Mater. 2012, 2, 1182–1187.

41

Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F. P.; Zeng, M. et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-grapheme. Nat. Commun. 2015, 6, 10035.

42

Zhang, Z. C.; Luo, Z. M.; Chen, B.; Wei, C.; Zhao, J.; Chen, J. Z.; Zhang, X.; Lai, Z. C.; Fan, Z. X.; Tan, C. L. et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 2016, 28, 8712–8717.

43

Serrà, A.; Gómez, E.; Golosovsky, I. V.; Nogués, J.; Vallés, E. Effective ionic-liquid microemulsion based electrodeposition of mesoporous Co-Pt films for methanol oxidation catalysis in alkaline media. J. Mater. Chem. A 2016, 4, 7805–7814.

44

Ye, L. T.; Li, Z. S.; Zhang, X. F.; Lei, F. L.; Lin, S. One-step microwave synthesis of Pt (Pd)/Cu2O/GNs composites and their electro-photo-synergistic catalytic properties for methanol oxidation. J. Mater. Chem. A 2014, 2, 21010–21019.

45

Zhang, G. L.; Yang, Z. Z.; Zhang, W.; Hu, H. W.; Wang, C. Z.; Huang, C. D.; Wang, Y. X. Tailoring the morphology of Pt3Cu1 nanocrystals supported on graphene nanoplates for ethanol oxidation. Nanoscale 2016, 8, 3075–3084.

46

Feng, J. J.; He, L. L.; Fang, R.; Wang, Q. L.; Yuan, J. H.; Wang, A. J. Bimetallic PtAu superlattice arrays: Highly electroactive and durable catalyst for oxygen reduction and methanol oxidation reactions. J. Power Sources 2016, 330, 140–148.

47

Wang, Z. H.; Xie, W. F.; Zhang, F. F.; Xia, J. F.; Gong, S. D.; Xia, Y. Z. Facile synthesis of PtPdPt nanocatalysts for methanol oxidation in alkaline solution. Electrochim. Acta 2016, 192, 400–406.

48

Wang, M.; Ma, Z. Z.; Li, R. X.; Tang, B.; Bao, X. Q.; Zhang, Z. H.; Wang, X. G. Novel flower-like PdAu(Cu) anchoring on a 3D rGO-CNT sandwich-stacked framework for highly efficient methanol and ethanol electro-oxidation. Electrochim. Acta 2017, 227, 330–334.

49

Wang, Y. R.; He, Q. L.; Guo, J.; Wei, H. G.; Ding, K. Q.; Lin, H. F.; Bhana, S.; Huang, X. H.; Luo, Z. P.; Shen, T. D. et al. Carboxyl multiwalled carbon-nanotube-stabilized palladium nanocatalysts toward improved methanol oxidation reaction. ChemElectroChem 2015, 2, 559–570.

50

Huang, W. J.; Ma, X.-Y.; Wang, H.; Feng, R. F.; Zhou, J. G.; Duchesne, P. N.; Zhang, P.; Chen, F. J.; Han, N.; Zhao, F. P. et al. Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution. Adv. Mater. 2017, 29, 1703057.

51

Zhu, C. Z.; Shi, Q. R.; Fu, S. F.; Song, J. H.; Xia, H. B.; Du, D.; Lin, Y. H. Efficient synthesis of MCu (M = Pd, Pt, and Au) aerogels with accelerated gelation kinetics and their high electrocatalytic activity. Adv. Mater. 2016, 28, 8779–8783.

52

Jiang, K. Z.; Wang, P. T.; Guo, S. J.; Zhang, X.; Shen, X.; Lu, G.; Su, D.; Huang, X. Q. Ordered PdCu-based nanoparticles as bifunctional oxygen-reduction and ethanol-oxidation electrocatalysts. Angew. Chem., Int. Ed. 2016, 55, 9030–9035.

53

Wang, A. L.; He, X. J.; Lu, X. F.; Xu, H.; Tong, Y. X.; Li, G. R. Palladium-cobalt nanotube arrays supported on carbon fiber cloth as high-performance flexible electrocatalysts for ethanol oxidation. Angew. Chem., Int. Ed. 2015, 54, 3669–3673.

54

Hong, J. W.; Kim, Y.; Wi, D. H.; Lee, S.; Lee, S. U.; Lee, Y. W.; Choi, S. I.; Han, S. W. Ultrathin free-standing ternary-alloy nanosheets. Angew. Chem., Int. Ed. 2016, 55, 2753–2758.

55

Dutta, A.; Ouyang, J. Y. Ternary NiAuPt nanoparticles on reduced graphene oxide as catalysts toward the electrochemical oxidation reaction of ethanol. ACS Catal. 2015, 5, 1371–1380.

56

Pech-Rodríguez, W. J.; González-Quijano, D.; Vargas-Gutiérrez, G.; Morais, C.; Napporn, T. W.; Rodríguez-Varela, F. J. Electrochemical and in situ FTIR study of the ethanol oxidation reaction on PtMo/C nanomaterials in alkaline media. Appl. Catal. B 2017, 203, 654–662.

57

Liu, Q.; Fan, J. C.; Min, Y. L.; Wu, T.; Lin, Y.; Xu, Q. J. B, N-codoped graphene nanoribbons supported Pd nanoparticles for ethanol electrooxidation enhancement. J. Mater. Chem. A 2016, 4, 4929–4933.

58

Liu, H. M.; Li, J. H.; Wang, L. J.; Tang, Y. W.; Xia, B. Y.; Chen, Y. Trimetallic PtRhNi alloy nanoassemblies as highly active electrocatalyst for ethanol electrooxidation. Nano Res. 2017, 10, 3324–3332.

59

Zhang, Z. Y.; Liu, S. S.; Tian, X.; Wang, J.; Xu, P.; Xiao, F.; Wang, S. Facile synthesis of N-doped porous carbon encapsulated bimetallic PdCo as a highly active and durable electrocatalyst for oxygen reduction and ethanol oxidation. J. Mater. Chem. A 2017, 5, 10876–10884.

60

Huang, D. B.; Yuan, Q.; He, P. L.; Wang, K.; Wang, X. A facile and general strategy for the synthesis of porous flowerlike Pt-based nanocrystals as effective electrocatalysts for alcohol oxidation. Nanoscale 2016, 8, 14705–14710.

61

Yang, Z. Z.; Wang, X. L.; Kang, X.; Zhang, S. Q.; Guo, Y. L. The PtPdAg/C electrocatalyst with Pt-rich surfaces via electrochemical dealloying of Ag and Pd for ethanol oxidation. Electrochim. Acta 2017, 236, 72–81.

62

Zhang, G. L.; Liu, Z. Y.; Xiao, Z. L.; Huang, J. L.; Li, Q. B.; Wang, Y. X.; Sun, D. H. Ni2P-graphite nanoplatelets supported Au-Pd core–shell nanoparticles with superior electrochemical properties. J. Phys. Chem. C 2015, 119, 10469–10477.

63

Ge, J. J.; Wei, P.; Wu, G.; Liu, Y. D.; Yuan, T. W.; Li, Z. J.; Qu, Y. T.; Wu, Y. E.; Li, H.; Zhuang, Z. B. et al. Ultrathin palladium nanomesh for electrocatalysis. Angew. Chem., Int. Ed. 2018, 130, 3493–3496.

64

Chen, L.; Lu, L. L.; Zhu, H. L.; Chen, Y. G.; Huang, Y.; Li, Y. D.; Wang, L. Y. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts. Nat. Commun. 2017, 8, 14136.

65

Zhang, B. W.; He, C. L.; Jiang, Y. X.; Chen, M. H.; Li, Y. Y.; Rao, L.; Sun, S. G. High activity of PtBi intermetallics supported on mesoporous carbon towards HCOOH electro-oxidation. Electrochem. Commun. 2012, 25, 105–108.

66

Zheng, Y. R.; Gao, M. R.; Li, H. H.; Gao, Q.; Arshad, M. N.; Albar, H. A.; Sobahi, T. R.; Yu, S.-H. Carbon-supported PtCo2Ni2 alloy with enhanced activity and stability for oxygen reduction. Sci. China Mater. 2015, 58, 179–185.

67

Tripković, A. V.; Popović, K. D.; Stevanović, R. M.; Socha, R.; Kowal, A. Activity of a PtBi alloy in the electrochemical oxidation of formic acid. Electrochem. Commun. 2006, 8, 1492–1498.

68

Ho, V. T. T.; Pan, C.-J.; Rick, J.; Su, W.-N.; Hwang, B.-J. Nanostructured Ti0.7Mo0.3O2 support enhances electron transfer to Pt: High-performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2011, 133, 11716–11724.

69

Wang, S. Y.; Yang, F.; Jiang, S. P.; Chen, S. L.; Wang, X. Tuning the electrocatalytic activity of Pt nanoparticles on carbon nanotubes via surface functionalization. Electrochem. Commun. 2010, 12, 1646–1649.

70

Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

File
12274_2018_2234_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 September 2018
Revised: 22 October 2018
Accepted: 27 October 2018
Published: 09 November 2018
Issue date: February 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work is supported by the Ministry of Science and Technology of the People's Republic of China (No. 2016YFE0129600), the National Natural Science Foundation of China (Nos. 21673150, 21611540336, and 21703146), and the Postdoctoral Science Foundation of China (No. 2016M591909). We acknowledge the financial support from the 111 Project, Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO–CIC), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and SWC for Synchrotron Radiation Research.

Return