Journal Home > Volume 12 , Issue 2

The lateral flow immunoassay (LFIA) has emerged as a powerful tool for rapid screening owing to its simplicity and flexibility for detection of various biomarkers. However, conventional LFIA strips have several disadvantages, including limits in quantitative analysis and low sensitivity. Here we developed a novel surface-enhanced Raman scattering LFIA based on nonspherical gap-enhanced Raman tags (GERTs), with Raman molecules (RMs) embedded in a 1-nm gap between Au nanorod core and Au shell. Such tags have a strong and uniform surface-enhanced Raman scattering (SERS) response, an order of magnitude higher than that of other common SERS tags such as Au nanorods, nanostars, Au nanoshells with surface-adsorbed RMs, or spherical GERTs with embedded RMs. The feasibility of the tags was demonstrated by the semiquantitative and sensitive detection of the heart disease biomarker cardiac troponin I (cTnI). GERTs were conjugated with monoclonal antibodies and used for LFIA in the same way as ordinary functionalized colloidal gold. The presence of the target antigen, cTnI, was identified by Raman microscopy mapping of the test zone. With the SERS-based LFIA, the limit of cTnI detection was about 0.1 ng/mL. This value is within the diagnostic range of cTnI in the blood serum of patients with heart infarction and is 30 times lower than that of the colorimetric LFIA test using the same antibodies and either GERTs or colloidal gold as labels.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

SERS-based lateral flow immunoassay of troponin I by using gap-enhanced Raman tags

Show Author's information Boris N. Khlebtsov1,2( )Daniil N. Bratashov2Nadezhda A. Byzova3Boris B. Dzantiev3Nikolai G. Khlebtsov1,2( )
Institute of Biochemistry and Physiology of Plants and Microorganisms,Russian Academy of Sciences,Saratov,410049,Russia;
Saratov State University,Saratov,410012,Russia;
A. N. Bach Institute of Biochemistry,Research Centre of Biotechnology, Russian Academy of Sciences,Moscow,119071,Russia;

Abstract

The lateral flow immunoassay (LFIA) has emerged as a powerful tool for rapid screening owing to its simplicity and flexibility for detection of various biomarkers. However, conventional LFIA strips have several disadvantages, including limits in quantitative analysis and low sensitivity. Here we developed a novel surface-enhanced Raman scattering LFIA based on nonspherical gap-enhanced Raman tags (GERTs), with Raman molecules (RMs) embedded in a 1-nm gap between Au nanorod core and Au shell. Such tags have a strong and uniform surface-enhanced Raman scattering (SERS) response, an order of magnitude higher than that of other common SERS tags such as Au nanorods, nanostars, Au nanoshells with surface-adsorbed RMs, or spherical GERTs with embedded RMs. The feasibility of the tags was demonstrated by the semiquantitative and sensitive detection of the heart disease biomarker cardiac troponin I (cTnI). GERTs were conjugated with monoclonal antibodies and used for LFIA in the same way as ordinary functionalized colloidal gold. The presence of the target antigen, cTnI, was identified by Raman microscopy mapping of the test zone. With the SERS-based LFIA, the limit of cTnI detection was about 0.1 ng/mL. This value is within the diagnostic range of cTnI in the blood serum of patients with heart infarction and is 30 times lower than that of the colorimetric LFIA test using the same antibodies and either GERTs or colloidal gold as labels.

Keywords: surface-enhanced Raman scattering (SERS), lateral flow immunoassay, Au core/shell nanorods, gap-enhanced Raman tags, cardiac troponin I

References(74)

1

Parolo, C.; Merkoci, A. Paper-based nanobiosensors for diagnostics. Chem. Soc. Rev. 2013, 42, 450-457.

2

Dzantiev, B. B.; Byzova, N. A.; Urusov A. E.; Zherdev, A. V. Immunochromatographic methods in food analysis. TrAC Trends Anal. Chem. 2014, 55, 81-93.

3

Koczula, K. M.; Gallotta, A. Lateral flow assays. Essays Biochem. 2016, 60, 111-120.

4

de Puig, H.; Bosch, I.; Gehrke, L.; Hamad-Schifferli, K. Challenges of the nano-bio interface in lateral flow and dipstick immunoassays. Trends Biotechnol. 2017, 35, 1169-1180.

5

Mak, W. C.; Beni, V.; Turner, A. P. F. Lateral-flow technology: From visual to instrumental. TrAC Trends Anal. Chem. 2016, 79, 297-305.

6

Bahadır, E. B.; Sezgintürk, M. K. Lateral flow assays: Principles, designs and labels. TrAC Trends Anal. Chem. 2016, 82, 286-306.

7

Quesada-González, D.; Merkoçi, A. Nanoparticle-based lateral flow biosensors. Biosens. Bioelectron. 2015; 73, 47-63.

8

Raeisossadat, M. J.; Danesh, N. M.; Borna, F.; Gholamzad, M.; Ramezani, M.; Abnous, K.; Taghdisi, S. M. Lateral flow based immunobiosensors for detection of food contaminants. Biosens. Bioelectron. 2016, 86, 235-2466.

9

Dykman, L.; Khlebtsov, N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 2012, 41, 2256-2282.

10

Wang, P. L.; Lin, Z. Y.; Su, X. O.; Tang, Z. Y. Application of Au based nanomaterials in analytical science. Nano Today 2017, 12, 64-97.

11

Shan, S.; Lai, W. H.; Xiong, Y. H.; Wei, H.; Xu, H. Y. Novel strategies to enhance lateral flow immunoassay sensitivity for detecting foodborne pathogens. J. Agric. Food Chem. 2015, 63, 745-753.

12

Zherdev, A. V., Dzantiev, B. B. Ways to reach lower detection limits in lateral flow immunoassays. In Rapid Test-Advances in Design, Format and Diagnostic Applications. Anfossi, L., Ed.; InTechOpen: London, 2018, pp 9-43.

13

Brangel, P.; Sobarzo, A.; Parolo, C.; Miller, B. S.; Howes, P. D.; Gelkop, S.; Lutwama, J. J.; Dye, J. M.; McKendry, R. A.; Lobel, L. et al. A serological point-of-care test for the detection of IgG antibodies against Ebola virus in human survivors. ACS Nano 2018, 12, 63-73.

14

Feng, S.; Caire, R.; Cortazar, B.; Turan, M.; Wong, A.; Ozcan, A. Immunochromatographic diagnostic test analysis using Google glass. ACS Nano 2014, 8, 3069-3079.

15

Goryacheva, I. Y.; Lenain, P.; De Saeger, S. Nanosized labels for rapid immunotests. TrAC Trends Anal. Chem. 2013, 46, 30-43.

16

Gong, X. Q.; Cai, J.; Zhang, B.; Zhao, Q.; Piao, J. F.; Peng, W. P.; Gao, W. C.; Zhou, D. M.; Zhao, M.; Chang, J. A review of fluorescent signal-based lateral flow immunochromatographic strips. J. Mater. Chem. B 2017, 5, 5079-5091.

17

Wang, Z. Y.; Zong, S. F.; Wu, L.; Zhu, D.; Cui, Y. P. SERS-activated platforms for immunoassay: Probes, encoding methods, and applications. Chem. Rev. 2017, 117, 7910-7963.

18

Mir-Simon, B.; Reche-Perez, I.; Guerrini, L.; Pazos-Perez, N.; Alvarez-Puebla, R. A. Universal one-pot and scalable synthesis of SERS encoded nanoparticles. Chem. Mater. 2015, 27, 950-958.

19

Samanta, A.; Maiti, K. K.; Soh, K. S.; Liao, X.; Vendrell, M.; Dinish, U. S.; Yun, S. W.; Bhuvaneswari, R.; Kim, H.; Rautela, S. et al. Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection. Angew. Chem. , Int. Ed. 2011, 50, 6089-6092.

20

Khlebtsov, N. G.; Khlebtsov, B. N. Optimal design of gold nanomatryoshkas with embedded Raman reporters. J. Quant. Spectrosc. Radiat. Transfer 2017, 190, 89-102.

21

Wang, Y. Q.; Yan, B.; Chen, L. X. SERS tags: Novel optical nanoprobes for bioanalysis. Chem. Rev. 2013, 113, 1391-1428.

22

Fu, X. L.; Cheng, Z. Y.; Yu, J. M.; Choo, P.; Chen, L. X.; Choo, J. A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA. Biosens. Bioelectron. 2016, 78, 530-537.

23

Wang, X. K.; Choi, N.; Cheng, Z. Y.; Ko, J.; Chen, L. X.; Choo, J. Simultaneous detection of dual nucleic acids using a SERS-based lateral flow assay biosensor. Anal. Chem. 2017, 89, 1163-1169.

24

Choi, S.; Hwang, J.; Lee, S.; Lim, D. W.; Joo, H.; Choo, J. Quantitative analysis of thyroid-stimulating hormone (TSH) using SERS-based lateral flow immunoassay. Sens. Actuat. B Chem. 2017, 240, 358-364.

25

Park, H. J.; Yang, S. C.; Choo J. Early diagnosis of influenza virus A using surface-enhanced Raman scattering-based lateral flow assay. Bull. Korean Chem. Soc. 2016, 37, 2019-2024.

26

Liu, H. B.; Du, X. J.; Zang, Y. X.; Li, P.; Wang, S. A SERS-based lateral flow strip biosensor for simultaneous detection of Listeria monocytogenes and Salmonella enterica serotype enteritidis. J. Agric. Food Chem. 2017, 65, 10290-10299.

27

Wang, J.; Zhang, L.; Huang, Y.; Dandapat, A.; Dai, L.; Zhang, G.; Lu, X.; Zhang, J.; Lai, W.; Chen, T.; Hollow Au-Ag nanoparticles labeled immunochromatography strip for highly sensitive detection of clenbuterol. Sci. Rep. 2017, 7, 41419.

28

Maneeprakorn, W.; Bamrungsap, S.; Apiwat, C.; Wiriyachaiporn, N. Surface-enhanced Raman scattering based lateral flow immunochromatographic assay for sensitive influenza detection. RSC Adv. 2016, 6, 112079-11208.

29

Hwang, J.; Lee, S.; Choo, J. Application of a SERS-based lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enterotoxin B. Nanoscale 2016, 8, 11418-11425.

30

Lim, D. K.; Jeon, K. S.; Hwang, J. H.; Kim, H.; Kwon, S.; Suh Y. D.; Nam J. M. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol. 2011, 6, 452-460.

31

Gandra, N.; Singamaneni, S. Bilayered Raman-intense gold nanostructures with hidden tags (BRIGHTs) for high-resolution bioimaging. Adv. Mater. 2013, 25, 1022-1027.

32

Gandra, N.; Hendargo, H. C.; Norton, S. J.; Fales, A. M.; Palmer, G. M.; Vo-Dinh, T. Tunable and amplified Raman gold nanoprobes for effective tracking (TARGET): In vivo sensing and imaging. Nanoscale 2016, 8, 8486-8494.

33

Khlebtsov, B.; Khanadeev, V., Khlebtsov, N. Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods. Nano Res. 2016, 9, 2303-2318.

34

Khlebtsov, B. N.; Khlebtsov, N. G. Surface morphology of a gold core controls the formation of hollow or bridged nanogaps in plasmonic nanomatryoshkas and their SERS responses. J. Phys. Chem. C 2016, 120, 15385-15394.

35

Lin, L.; Gu, H. C.; Ye, J. Plasmonic multi-shell nanomatryoshka particles as highly tunable SERS tags with built-in reporters. Chem. Commun. 2015, 51, 17740-17743.

36

Kang, J. W.; So, P. T. C.; Dasari, R. R.; Lim, D. K. High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap. Nano Lett. 2015, 15, 1766-1772.

37

Zhang, Y. Q.; Qiu, Y. Y.; Lin, L.; Gu, H. C.; Xiao, Z. Y.; Ye, J. Ultraphotostable mesoporous silica-coated gap-enhanced Raman tags (GERTs) for high-speed bioimaging. ACS Appl. Mater. Interfaces 2017, 9, 3995-4005.

38

Bao, Z. Z.; Zhang, Y. Q.; Tan, Z. Y.; Yin, X.; Di, W.; Ye, J. Gap-enhanced Raman tags for high-contrast sentinel lymph node imaging. Biomaterials 2018, 163, 105-115.

39

Kim, M.; Ko, S. M.; Kim, J. M.; Son, J.; Lee, C.; Rhim, W. K.; Nam, J. M. Dealloyed intra-nanogap particles with highly robust, quantifiable surface-enhanced Raman scattering signals for biosensing and bioimaging applications. ACS Cent. Sci. 2018, 4, 277-287.

40

Khlebtsov, B.; Pylaev, T.; Khanadeev, V.; Bratashov, D.; Khlebtsov N. Quantitative and multiplex dot-immunoassay using gap enhanced Raman tags. RSC Adv. 2017, 7, 40834-40841.

41

Zhang, D.; Huang, L.; Liu, B.; Ni, H. B.; Sun, L. D.; Su, E. B.; Chen, H. Y.; Gu, Z. Z.; Zhao, X. W. Quantitative and ultrasensitive detection of multiplex cardiac biomarkers in lateral flow assay with core-shell SERS nanotags. Biosens. Bioelectron. 2018, 106, 204-211.

42

Bruins Slot, M. H. E.; van der Heijde, G. J. M. G.; Stelpstra, S. D.; Hoes, A. W.; Rutten, F. H. Point-of-care tests in suspected acute myocardial infarction: A systematic review. Int. J. Cardiol. 2013, 168, 5355-5362.

43

Soetkamp, D.; Raedschelders, K.; Mastali, M.; Sobhani, K.; Bairey Merz, C. N.; Van Eyk, J. The continuing evolution of cardiac troponin I biomarker analysis: From protein to proteoform. Expert Rev. Proteomics 2007, 14, 973-986.

44

Park, K. C.; Gaze, D. C.; Collinson, P. O.; Marber, M. S. Cardiac troponins: From myocardial infarction to chronic disease. Cardiovasc. Res. 2017, 113, 1708-1718.

45

Han, X.; Li, S. H.; Peng, Z. L.; Othman, A. M.; Leblanc, R. Recent development of cardiac troponin I detection. ACS Sens. 2016, 1, 106-114.

46

Segraves, J. M.; Frishman, W. H. Highly sensitive cardiac troponin assays: A comprehensive review of their clinical utility. Cardiol. Rev. 2015, 23, 282-289.

47

Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957-1962.

48

Khlebtsov, B.; Khanadeev, V.; Pylaev, T.; Khlebtsov, N. A new T-matrix solvable model for nanorods: TEM-based ensemble simulations supported by experiments. J. Phys. Chem. C 2011, 115, 6317-6323.

49

Khlebtsov, B.; Panfilova, E.; Khanadeev, V.; Khlebtsov, N. Improved size-tunable synthesis and SERS properties of Au nanostars. J. Nanopart. Res. 2014, 16, 2623.

50

Khanadeev, V. A.; Khlebtsov, B. N.; Khlebtsov N. G. Optical properties of gold nanoshells on monodisperse silica cores: Experiment and simulations. J. Quant. Spectrosc. Radiat. Transfer 2017, 187, 1-9.

51

Byzova, N. A.; Safenkova, I. V.; Chirkov, S. N.; Zherdev, A. V.; Blintsov, A. N.; Dzantiev, B. B.; Atabekov, I. G. Development of immunochromatographic test systems for express detection of plant viruses. Appl. Biochem. Microbiol. 2009, 45, 204-209.

52

Byzova, N. A.; Zherdev, A. V.; Vengerov, Y. Y.; Starovoitova, T. A.; Dzantiev, B. B. A triple immunochromatographic test for simultaneous determination of cardiac troponin I, fatty acid binding protein, and C-reactive protein biomarkers. Microchim. Acta 2017, 184, 463-471.

53

Khlebtsov, B. N.; Khanadeev, V. A.; Burov, A. M.; Khlebtsov, N. G. A new type of SERS tags: Au@Ag core/shell nanorods with embedded aromatic molecules. Nanotechnol. Russia 2017, 12, 495-507.

54

Lin, L.; Zapata, M.; Xiong, M.; Liu, Z. H.; Wang, S. S.; Xu, H.; Borisov, A. G.; Gu, H. C.; Nordlander, P.; Aizpurua, J.; Ye, J. Nanooptics of plasmonic nanomatryoshkas: Shrinking the size of a core-shell junction to subnanometer. Nano Lett. 2015, 15, 6419-6428.

55

Lin, L.; Liu, Z. H.; Li, X. Y.; Gu, H. C.; Ye, J. Quantifying the reflective index of nanometer-thick thiolated molecular layers on nanoparticles. Nanoscale 2017, 9, 2213-2218.

56

Khlebtsov, B. N.; Khanadeev, V. A.; Ye, J.; Sukhorukov, G. B.; Khlebtsov, N. G. Overgrowth of gold nanorods by using a binary surfactant mixture. Langmuir 2014, 30, 1696-1703.

57

Abdelsalam, M. E. Surface enhanced Raman scattering of aromatic thiols adsorbed on nanostructured gold surfaces. Cent. Eur. J. Chem. 2009, 7, 446-453.

58

Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794-13803.

59

Khalid, M.; Sala, F. D.; Ciraci, C. Optical properties of plasmonic core-shell nanomatryoshkas: A quantum hydrodynamic analysis. Opt. Express 2018, 26, 17322-17334.

60

Lerch, S.; Reinhard, B. M. Effect of interstitial palladium on plasmon-driven charge transfer in nanoparticle dimers. Nat. Commun. 2018, 9, 1608.

61

Wang, S. S.; Liu, Z. H.; Bartic, C.; Xu, H.; Ye J. Improving SERS uniformity by isolating hot spots in gold rod-in-shell nanoparticles. J. Nanopart. Res. 2016, 18, 246.

62

Skadtchenko, B. O.; Aroca, R. Surface-enhanced Raman scattering of p-nitrothiophenol: Molecular vibrations of its silver salt and the surface complex formed on silver islands and colloids. Spectrochim. Acta Part A Mol. Biomol. Spectros. 2001, 57, 1009-1016.

63

Futamata, M. Surface-plasmon-polariton-enhanced Raman scattering from self-assembled monolayers of p-nitrothiophenol and p-aminothiophenol on silver. J. Phys. Chem. 1995, 99, 11901-11908.

64

Teguh, J. S.; Liu, F.; Xing, B.; Yeow, E. K. L. Surface-enhanced Raman scattering (SERS) of nitrothiophenol isomers chemisorbed on TiO2. Chem. Asian J. 2012, 7, 975-981.

65

Bai, T. T.; Wang, M.; Cao, M.; Zhang, J.; Zhang, K. Z.; Zhou, P.; Liu, Z. X.; Liu, Y.; Guo, Z. R.; Lu, X. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing. Anal. Bioanal. Chem. 2018, 410, 2291-2303.

66

Serebrennikova, K.; Samsonova, J.; Osipov, A. Hierarchical nanogold labels to improve the sensitivity of lateral flow immunoassay. Nano-Micro Lett. 2018, 10, 24.

67

Juntunen, E.; Arppe, R.; Kalliomaki, L.; Salminen, T.; Talha, S. M.; Myyryläinen, T.; Soukka, T.; Pettersson, K. Effects of blood sample anticoagulants on lateral flow assays using luminescent photon-upconverting and Eu(Ⅲ) nanoparticle reporters. Anal. Biochem. 2016, 492, 13-20.

68

Cho, J. H.; Kim, M. H.; Mok, R. S.; Jeon, J. W.; Lim, G. S.; Chai, C. Y.; Paek, S. H. Two-dimensional paper chromatography-based fluorescent immunosensor for detecting acute myocardial infarction markers. J. Chromatogr. B 2014, 967, 139-146.

69

Xu, Q. F.; Xu, H.; Gu, H. C.; Li, J. B.; Wang, Y. Y.; Wei, M. Development of lateral flow immunoassay system based on superparamagnetic nanobeads as labels for rapid quantitative detection of cardiac troponin I. Mat. Sci. Eng. C 2009, 29, 702-707.

70

Choi, D. H.; Lee, S. K.; Oh, Y. K.; Bae, B. W.; Lee, S. D.; Kim, S.; Shin, Y. B.; Kim, M. G. A dual gold nanoparticle conjugate-based lateral flow assay (LFA) method for the analysis of troponin I. Biosens. Bioelectron. 2010, 25, 1999-2002.

71

Ryu, Y.; Jin, Z. W.; Kang, M. S.; Kim, H. S. Increase in the detection sensitivity of a lateral flow assay for a cardiac marker by oriented immobilization of antibody. BioChip J. 2011, 5, 193-198.

72

Zhu, J. M.; Zou, N. L.; Zhu, D. N.; Wang, J.; Jin, Q. H.; Zhao, J. L.; Mao, H. J. Simultaneous detection of high-sensitivity cardiac troponin I and myoglobin by modified sandwich lateral flow immunoassay: Proof of principle. Clin. Chem. 2011, 57, 1732-1738.

73

Cai, Y. X.; Kang, K. R.; Li, Q. R.; Wang, Y.; He, X. W. Rapid and sensitive detection of cardiac troponin I for point-of-care tests based on red fluorescent microspheres. Molecules 2018, 23, 1102.

74

Akanda, M. R.; Joung, H. A.; Tamilavan, V.; Park, S.; Kim, S.; Hyun, M. H.; Kim, M. G.; Yang, H. An interference-free and rapid electrochemical lateral-flow immunoassay for one-step ultrasensitive detection with serum. Analyst 2014, 139, 1420-1425.

File
12274_2018_2232_MOESM1_ESM.pdf (13.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 June 2018
Revised: 18 October 2018
Accepted: 19 October 2018
Published: 19 November 2018
Issue date: February 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

The work on the synthesis and characterization of GERTs and on the development of SERS-based LFIA was supported by the Russian Scientific Foundation (No. 18-14-00016). Synthesis of labeled antibodies and studies of immune interactions in LFIA systems were supported by the Russian Foundation for Basic Research (No. 18-08-01397). BNK was supported by program No. 32 of the Presidium of the Russian Academy of Sciences ("Nanostructures: physics, chemistry, biology and basic techniques"). We thank D. N. Tychinin for his help in the preparation of the manuscript.

Return