Journal Home > Volume 12 , Issue 5

Elesclomol (ELC) is an anticancer drug inducing mitochondria cytotoxicity through reactive oxygen species. Here, for the first time, we encapsulate the poorly water soluble ELC in monoolein-based cubosomes stabilized with Pluronic F127. Cellular uptake and nanocarrier accumulation close to the mitochondria with sub-micrometer distance is identified via three-dimensional (3D) confocal microscopy and edge-to-edge compartment analysis. To monitor the therapeutic effect of the ELC nanocarrier, we apply for the first time, label-free time-lapse multi-photon fluorescence lifetime imaging microscopy (MP-FLIM) to track NAD(P)H cofactors with sub-cellular resolution on live cells exposed to an anticancer nanocarrier. Improved in vitro cytotoxicity is verified when loading the pre-complexed ELC with copper (ELC-Cu). Importantly, for equivalent copper concentration, cubosomes loaded with ELC-Cu show higher cytotoxicity compared to the free drug. The novel nanocarrier shows promising features for systemic ELC-Cu administration, and furthermore we establish the MP-FLIM technique for the assessment of anticancer drug delivery systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Cubosome nanoparticles for enhanced delivery of mitochondria anticancer drug elesclomol and therapeutic monitoring via sub-cellular NAD(P)H multi-photon fluorescence lifetime imaging

Show Author's information Ana R. Faria1,§Oscar F. Silvestre1,§Christian Maibohm1Ricardo M. R. Adão1Bruno F. B. Silva2Jana B. Nieder1( )
Department of Nanophotonics, Ultrafast Bio- and Nanophotonics Group,INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330,Braga,Portugal;
Department of Life Sciences,INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330,Braga,Portugal;

§ Ana R. Faria and Oscar F. Silvestre contributed equally to this work.

Abstract

Elesclomol (ELC) is an anticancer drug inducing mitochondria cytotoxicity through reactive oxygen species. Here, for the first time, we encapsulate the poorly water soluble ELC in monoolein-based cubosomes stabilized with Pluronic F127. Cellular uptake and nanocarrier accumulation close to the mitochondria with sub-micrometer distance is identified via three-dimensional (3D) confocal microscopy and edge-to-edge compartment analysis. To monitor the therapeutic effect of the ELC nanocarrier, we apply for the first time, label-free time-lapse multi-photon fluorescence lifetime imaging microscopy (MP-FLIM) to track NAD(P)H cofactors with sub-cellular resolution on live cells exposed to an anticancer nanocarrier. Improved in vitro cytotoxicity is verified when loading the pre-complexed ELC with copper (ELC-Cu). Importantly, for equivalent copper concentration, cubosomes loaded with ELC-Cu show higher cytotoxicity compared to the free drug. The novel nanocarrier shows promising features for systemic ELC-Cu administration, and furthermore we establish the MP-FLIM technique for the assessment of anticancer drug delivery systems.

Keywords: mitochondria, reactive oxygen species, cubosomes, elesclomol, NAD(P)H fluorescence lifetime, anticancer therapy

References(62)

1

Weinberg, S. E.; Chandel, N. S. Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol. 2015, 11, 9-15.

2

Fulda, S.; Galluzzi, L.; Kroemer, G. Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discov. 2010, 9, 447-464.

3

Raza, M. H.; Siraj, S.; Arshad, A.; Waheed, U.; Aldakheel, F.; Alduraywish, S.; Arshad, M. ROS-modulated therapeutic approaches in cancer treatment. J. Cancer Res. Clin. Oncol. 2017, 143, 1789-1809.

4

Modica-Napolitano, J. S.; Weissig, V. Treatment strategies that enhance the efficacy and selectivity of mitochondria-targeted anticancer agents. Int. J. Mol. Sci. 2015, 16, 17394-17421.

5

Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ros-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009, 8, 579-591.

6

Berkenblit, A.; Eder, J. P. Jr.; Ryan, D. P.; Seiden, M. V.; Tatsuta, N.; Sherman, M. L.; Dahl, T. A.; Dezube, B. J.; Supko, J. G. Phase I clinical trial of STA-4783 in combination with paclitaxel in patients with refractory solid tumors. Clin. Cancer Res. 2007, 13, 584-590.

7

O'Day, S.; Gonzalez, R.; Lawson, D.; Weber, R.; Hutchins, L.; Anderson, C.; Haddad, J.; Kong, S.; Williams, A.; Jacobson, E. Phase Ⅱ, randomized, controlled, double-blinded trial of weekly elesclomol plus paclitaxel versus paclitaxel alone for stage IV metastatic melanoma. J. Clin. Oncol. 2009, 27, 5452-5458.

8

Hedley, D.; Shamas-Din, A.; Chow, S.; Sanfelice, D.; Schuh, A. C.; Brandwein, J. M.; Seftel, M. D.; Gupta, V.; Yee, K. W. L.; Schimmer, A. D. A phase I study of elesclomol sodium in patients with acute myeloid leukemia. Leuk. Lymphoma 2016, 57, 2437-2440.

9

Nagai, M.; Vo, N. H.; Shin Ogawa, L.; Chimmanamada, D.; Inoue, T.; Chu, J.; Beaudette-Zlatanova, B. C.; Lu, R. Z.; Blackman, R. K.; Barsoum, J. et al. The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells. Free Radic. Biol. Med. 2012, 52, 2142-2150.

10

Blackman, R. K.; Cheung-Ong, K.; Gebbia, M.; Proia, D. A.; He, S. Q.; Kepros, J.; Jonneaux, A.; Marchetti, P.; Kluza, J.; Rao, P. E. et al. Mitochondrial electron transport is the cellular target of the oncology drug elesclomol. PLoS One 2012, 7, e29798.

11

Kirshner, J. R.; He, S. Q.; Balasubramanyam, V.; Kepros, J.; Yang, C. Y.; Zhang, M.; Du, Z. J.; Barsoum, J.; Bertin, J. Elesclomol induces cancer cell apoptosis through oxidative stress. Mol. Cancer Ther. 2008, 7, 2319-2327.

12

Hasinoff, B. B.; Wu, X.; Yadav, A. A.; Patel, D.; Zhang, H.; Wang, D. S.; Chen, Z. S.; Yalowich, J. C. Cellular mechanisms of the cytotoxicity of the anticancer drug elesclomol and its complex with Cu(Ⅱ). Biochem. Pharmacol. 2015, 93, 266-276.

13

Hasinoff, B. B.; Yadav, A. A.; Patel, D.; Wu, X. The cytotoxicity of the anticancer drug elesclomol is due to oxidative stress indirectly mediated through its complex with Cu(Ⅱ). J. Inorg. Biochem. 2014, 137, 22-30.

14

Yadav, A. A.; Patel, D.; Wu, X.; Hasinoff, B. B. Molecular mechanisms of the biological activity of the anticancer drug elesclomol and its complexes with Cu(Ⅱ), Ni(Ⅱ) and Pt(Ⅱ). J. Inorg. Biochem. 2013, 126, 1-6.

15

Karami, Z.; Hamidi, M. Cubosomes: Remarkable drug delivery potential. Drug Discov. Today 2016, 21, 789-801.

16

Allen, T. M.; Cullis, P. R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36-48.

17

Larsson, K. Aqueous dispersions of cubic lipid-water phases. Curr. Opin. Colloid Interface Sci. 2000, 5, 64-69.

18

Demurtas, D.; Guichard, P.; Martiel, I.; Mezzenga, R.; Hébert, C.; Sagalowicz, L. Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography. Nat. Commun. 2015, 6, 8915.

19

Seddon, J. M.; Templer, R. H. Cubic phases of self-assembled amphiphilic aggregates. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 1993, 344, 377-401.

20

Oliveira, A. C. N.; Raemdonck, K.; Martens, T.; Rombouts, K.; Simón-Vázquez, R.; Botelho, C.; Lopes, I.; Lúcio, M.; González-Fernández, Á.; Real Oliveira, M. E. C. D. et al. Stealth monoolein-based nanocarriers for delivery of siRNA to cancer cells. Acta Biomater. 2015, 25, 216-229.

21

Spicer, P. T.; Hayden, K. L.; Lynch, M. L.; Ofori-Boateng, A.; Burns, J. L. Novel process for producing cubic liquid crystalline nanoparticles (cubosomes). Langmuir 2001, 17, 5748-5756.

22

Kulkarni, C. V.; Wachter, W.; Iglesias-Salto, G.; Engelskirchen, S.; Ahualli, S. Monoolein: A magic lipid? Phys. Chem. Chem. Phys. 2011, 13, 3004-3021.

23

Yaghmur, A.; Glatter, O. Characterization and potential applications of nanostructured aqueous dispersions. Adv. Colloid Interface Sci. 2009, 147-148, 333-342.

24

Zhai, J. L.; Tran, N.; Sarkar, S.; Fong, C.; Mulet, X.; Drummond, C. J. Self-assembled lyotropic liquid crystalline phase behavior of monoolein-capric acid-phospholipid nanoparticulate systems. Langmuir 2017, 33, 2571-2580.

25

Azmi, I. D.; Moghimi, S. M.; Yaghmur, A. Cubosomes and hexosomes as versatile platforms for drug delivery. Ther. Deliv. 2015, 6, 1347-1364.

26

Rizwan, S. B.; Assmus, D.; Boehnke, A.; Hanley, T.; Boyd, B. J.; Rades, T.; Hook, S. Preparation of phytantriol cubosomes by solvent precursor dilution for the delivery of protein vaccines. Eur. J. Pharm. Biopharm. 2011, 79, 15-22.

27

Nazaruk, E.; Majkowska-Pilip, A.; Bilewicz, R. Lipidic cubic-phase nanoparticles—Cubosomes for efficient drug delivery to cancer cells. Chempluschem 2017, 82, 570-575.

28

Mat Azmi, I. D.; Nilsson, C.; Stürup, S.; Østergaard, J.; Gammelgaard, B.; Moghimi, S. M.; Urtti, A. Characterization of cisplatin-loaded cubosomes and hexosomes: Effect of mixing with human plasma. J. Geriatr. Oncol. 2013, 4, S62.

29

Nasr, M.; Ghorab, M. K.; Abdelazem, A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm. Sin. B 2015, 5, 79-88.

30

Maulucci, G.; Bačić, G.; Bridal, L.; Schmidt, H. H. H. W.; Tavitian, B.; Viel, T.; Utsumi, H.; Yalçın, A. S.; De Spirito, M. Imaging reactive oxygen species-induced modifications in living systems. Antioxid. Redox Signal. 2016, 24, 939-958.

31

Blacker, T. S.; Duchen, M. R. Investigating mitochondrial redox state using nadh and NADPH autofluorescence. Free Radic. Biol. Med. 2016, 100, 53-65.

32

Wang, Z. W.; Zheng, Y. P.; Zhao, D. Q.; Zhao, Z. W.; Liu, L. X.; Pliss, A.; Zhu, F. Q.; Liu, J.; Qu, J. L.; Luan, P. Applications of fluorescence lifetime imaging in clinical medicine. J. Innov. Opt. Health Sci. 2018, 11, 1830001.

33

Kolenc, O. I.; Quinn, K. P. Evaluating cell metabolism through autofluorescence imaging of NAD(P)H and FAD. Antioxid. Redox Signal. , in press, https://doi.org/10.1089/ars.2017.7451.

34

Blacker, T. S.; Mann, Z. F.; Gale, J. E.; Ziegler, M.; Bain, A. J.; Szabadkai, G.; Duchen, M. R. Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat. Commun. 2014, 5, 3936.

35

Lakowicz, J. R.; Szmacinski, H.; Nowaczyk, K.; Johnson, M. L. Fluorescence lifetime imaging of free and protein-bound NADH. Proc. Natl. Acad. Sci. USA 1992, 89, 1271-1275.

36

Alexiev, U.; Volz, P.; Boreham, A.; Brodwolf, R. Time-resolved fluorescence microscopy (FLIM) as an analytical tool in skin nanomedicine. Eur. J. Pharm. Biopharm. 2017, 116, 111-124.

37

Lin, L. L.; Grice, J. E.; Butler, M. K.; Zvyagin, A. V.; Becker, W.; Robertson, T. A.; Soyer, H. P.; Roberts, M. S.; Prow, T. W. Time-correlated single photon counting for simultaneous monitoring of zinc oxide nanoparticles and NAD(P)H in intact and barrier-disrupted volunteer skin. Pharm. Res. 2011, 28, 2920-2930.

38

Walsh, A. J.; Cook, R. S.; Sanders, M. E.; Aurisicchio, L.; Ciliberto, G.; Arteaga, C. L.; Skala, M. C. Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Res. 2014, 74, 5184-5194.

39

Shirmanova, M. V.; Druzhkova, I. N.; Lukina, M. M.; Dudenkova, V. V.; Ignatova, N. I.; Snopova, L. B.; Shcheslavskiy, V. I.; Belousov, V. V.; Zagaynova, E. V. Chemotherapy with cisplatin: Insights into intracellular pH and metabolic landscape of cancer cells in vitro and in vivo. Sci. Rep. 2017, 7, 8911.

40

Alam, S. R.; Wallrabe, H.; Svindrych, Z.; Chaudhary, A. K.; Christopher, K. G.; Chandra, D.; Periasamy, A. Investigation of mitochondrial metabolic response to doxorubicin in prostate cancer cells: An NADH, FAD and tryptophan FLIM assay. Sci. Rep. 2017, 7, 10451.

41

Shah, A. T.; Diggins, K. E.; Walsh, A. J.; Irish, J. M.; Skala, M. C. In vivo autofluorescence imaging of tumor heterogeneity in response to treatment. Neoplasia 2015, 17, 862-870.

42

Tilley, A. J.; Drummond, C. J.; Boyd, B. J. Disposition and association of the steric stabilizer Pluronic® F127 in lyotropic liquid crystalline nano-structured particle dispersions. J. Colloid Interface Sci. 2013, 392, 288-296.

43

Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems—A review (part 2). Trop. J. Pharm. Res. 2013, 12, 265-273.

44

Yingchoncharoen, P.; Kalinowski, D. S.; Richardson, D. R. Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacol. Rev. 2016, 68, 701-787.

45

Choi, K. Y.; Silvestre, O. F.; Huang, X. L.; Min, K. H.; Howard, G. P.; Hida, N.; Jin, A. J.; Carvajal, N.; Lee, S. W.; Hong, J. I. et al. Versatile RNA interference nanoplatform for systemic delivery of RNAs. ACS Nano 2014, 8, 4559-4570.

46

Rampersad, S. N. Multiple applications of alamar blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 2012, 12, 12347-12360.

47

Hinton, T. M.; Grusche, F.; Acharya, D.; Shukla, R.; Bansal, V.; Waddington, L. J.; Monaghan, P.; Muir, B. W. Bicontinuous cubic phase nanoparticle lipid chemistry affects toxicity in cultured cells. Toxicol. Res. 2014, 3, 11-22.

48

Tran, N.; Mulet, X.; Hawley, A. M.; Hinton, T. M.; Mudie, S. T.; Muir, B. W.; Giakoumatos, E. C.; Waddington, L. J.; Kirby, N. M.; Drummond, C. J. Nanostructure and cytotoxicity of self-assembled monoolein-capric acid lyotropic liquid crystalline nanoparticles. RSC Adv. 2015, 5, 26785-26795.

49

Zhai, J. L.; Suryadinata, R.; Luan, B.; Tran, N.; Hinton, T. M.; Ratcliffe, J.; Hao, X. J.; Drummond, C. J. Amphiphilic brush polymers produced using the RAFT polymerisation method stabilise and reduce the cell cytotoxicity of lipid lyotropic liquid crystalline nanoparticles. Faraday Discuss. 2016, 191, 545-563.

50

Zhang, S. L.; Gao, H. J.; Bao, G. Physical principles of nanoparticle cellular endocytosis. ACS Nano 2015, 9, 8655-8671.

51

Liu, Y.; Workalemahu, B.; Jiang, X. Y. The effects of physicochemical properties of nanomaterials on their cellular uptake in vitro and in vivo. Small 2017, 13, 1701815.

52

Gilles, J. F.; Dos Santos, M.; Boudier, T.; Bolte, S.; Heck, N. DiAna, an ImageJ tool for object-based 3D co-localization and distance analysis. Methods 2017, 115, 55-64.

53

Rosa, A.; Murgia, S.; Putzu, D.; Meli, V.; Falchi, A. M. Monoolein-based cubosomes affect lipid profile in HeLa cells. Chem. Phys. Lipids 2015, 191, 96-105.

54

Rambold, A. S.; Cohen, S.; Lippincott-Schwartz, J. Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell 2015, 32, 678-692.

55

Beloribi-Djefaflia, S.; Vasseur, S.; Guillaumond, F. Lipid metabolic reprogramming in cancer cells. Oncogenesis 2016, 5, e189.

56

Falchi, A. M.; Rosa, A.; Atzeri, A.; Incani, A.; Lampis, S.; Meli, V.; Caltagirone, C.; Murgia, S. Effects of monoolein-based cubosome formulations on lipid droplets and mitochondria of HeLa cells. Toxicol. Res. 2015, 4, 1025-1036.

57

Ying, W. H. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences. Antioxid. Redox Signal. 2008, 10, 179-206.

58

Vinogradov, A. D.; Grivennikova, V. G. Oxidation of NADH and ROS production by respiratory complex I. Biochim. Biophys. Acta Bioenerg. 2016, 1857, 863-871.

59

Chaderjian, W. B.; Chin, E. T.; Harris, R. J.; Etcheverry, T. M. Effect of copper sulfate on performance of a serum-free CHO cell culture process and the level of free thiol in the recombinant antibody expressed. Biotechnol. Prog. 2005, 21, 550-553.

60

Lin, M.; Wang, D. D.; Liu, S. W.; Huang, T. T.; Sun, B.; Cui, Y.; Zhang, D. Q.; Sun, H. C.; Zhang, H.; Sun, H. et al. Cupreous complex-loaded chitosan nanoparticles for photothermal therapy and chemotherapy of oral epithelial carcinoma. ACS Appl. Mater. Interfaces 2015, 7, 20801-20812.

61

Wellcome Sanger Institute. Genomics of Drug Sensitivity in Cancer[Online]. http://www.cancerrxgene.org/translation/Drug/1031 (accessed Dec 6, 2017)

62

Enderlein, J.; Erdmann, R. Fast fitting of multi-exponential decay curves. Opt. Commun. 1997, 134, 371-378.

File
12274_2018_2231_MOESM1_ESM.pdf (5.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 April 2018
Revised: 19 October 2018
Accepted: 21 October 2018
Published: 09 November 2018
Issue date: May 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was funded partly by the Comissão de Coordenação e Desenvolvimento Regional do Norte (CCDR-N) project "Nanotechnology based functional solutions" (No. NORTE01-0145-FEDER-000019). O. F. S. received a Marie Curie fellowship, EU-EC COFUND program "NanoTRAINforGrowth" (No. 600375). The authors wish to thank Enrique Carbo-Argibay (INL) and Oliver Schraidt (INL) for the assistance with the cryo-TEM imaging, and Edite Figueiras (INL) for technical support related to the FLIM experiments.

Return