Journal Home > Volume 12 , Issue 2

Labor-saving preparation of highly active electrocatalysts for alcohols oxidation, especially for the ethylene glycol and glycerol electrooxidation is of great importance for the development of fuel cells. Herein, mesocellular graphene foam (MGF) constructed by ultrathin nanosheets were prepared using lamellar MCM-22 zeolite as template and then ultra-small Pd NPs were facile grew on it via the stabilizer-free synthesis. Detailed characterizations showed that the obtained Pd/MGF had large surface area, hierarchical porous architecture, semi-graphitic framework and dispersed Pd NPs anchoring. Electrochemical measurements demonstrated that Pd/MGF possessed the higher catalytic activity (1.7–2.9 fold higher) and stability for the different alcohols electrooxidation, especially for the ethylene glycol and glycerol electrooxidation in the alkaline solution, than the commercial Pd/C (10 wt.%) catalyst. Reaction kinetics analysis revealed the expanded diffusion-controlled process of Pd/MGF as compared to Pd/C. These findings promised a potential electrocatalyst for direct alcohol fuel cells (DAFC), especially for the direct ethylene glycol or glycerol fuel cells with high energy density.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Facile growth of ultra-small Pd nanoparticles on zeolite-templated mesocellular graphene foam for enhanced alcohol electrooxidation

Show Author's information Xuexue Cui1Yaling Li1Mingyu Zhao1Yunshi Xu1Leilei Chen1,2Shuguang Yang1Yi Wang1,2( )
Center for Advanced Low-dimension Materials,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University,Shanghai,201620,China;
College of Chemistry,Chemical Engineering and Biotechnology, Donghua University,Shanghai,201620,China;

Abstract

Labor-saving preparation of highly active electrocatalysts for alcohols oxidation, especially for the ethylene glycol and glycerol electrooxidation is of great importance for the development of fuel cells. Herein, mesocellular graphene foam (MGF) constructed by ultrathin nanosheets were prepared using lamellar MCM-22 zeolite as template and then ultra-small Pd NPs were facile grew on it via the stabilizer-free synthesis. Detailed characterizations showed that the obtained Pd/MGF had large surface area, hierarchical porous architecture, semi-graphitic framework and dispersed Pd NPs anchoring. Electrochemical measurements demonstrated that Pd/MGF possessed the higher catalytic activity (1.7–2.9 fold higher) and stability for the different alcohols electrooxidation, especially for the ethylene glycol and glycerol electrooxidation in the alkaline solution, than the commercial Pd/C (10 wt.%) catalyst. Reaction kinetics analysis revealed the expanded diffusion-controlled process of Pd/MGF as compared to Pd/C. These findings promised a potential electrocatalyst for direct alcohol fuel cells (DAFC), especially for the direct ethylene glycol or glycerol fuel cells with high energy density.

Keywords: reaction kinetics, mesocellular graphene foam, ultra-small nanoparticles, stabilizer-free synthesis, alcohol electrooxidation

References(52)

1

Badalyan, A.; Stahl, S. S. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators. Nature 2016, 535, 406-410.

2

Wang, Y. J.; Qiao, J. L.; Baker, R.; Zhang, J. J. Alkaline polymer electrolyte membranes for fuel cell applications. Chem. Soc. Rev. 2013, 42, 5768-5787.

3

Ma, S. Y.; Li, H. H.; Hu, B. C.; Cheng, X.; Fu, Q. Q.; Yu, S. H. Synthesis of low Pt-based quaternary PtPdRuTe nanotubes with optimized incorporation of Pd for enhanced Electrocatalytic activity. J. Am. Chem. Soc. 2017, 139, 5890-5895.

4

Long, G. F.; Li, X. H.; Wan, K.; Liang, Z. X.; Piao, J. H.; Tsiakaras, P. Pt/CN-doped electrocatalysts: Superior electrocatalytic activity for methanol oxidation reaction and mechanistic insight into interfacial enhancement. Appl. Catal. B: Environ. 2017, 203, 541-548.

5

Huang, L.; Han, Y. J.; Zhang, X. P.; Fang, Y. X.; Dong, S. J. One-step synthesis of ultrathin PtxPb nerve-like nanowires as robust catalysts for enhanced methanol electrooxidation. Nanoscale 2017, 9, 201-207.

6

Li, S. S.; Hu, Y. Y.; Feng, J. J.; Lv, Z. Y.; Chen, J. R.; Wang, A. J. Rapid room-temperature synthesis of Pd nanodendrites on reduced graphene oxide for catalytic oxidation of ethylene glycol and glycerol. Int. J. Hydrogen Energy 2014, 39, 3730-3738.

7

Wang, H.; Jiang, B.; Zhao, T. T.; Jiang, K.; Yang, Y. Y.; Zhang, J. W.; Xie, Z. X.; Cai, W. B. Electrocatalysis of ethylene glycol oxidation on bare and bi-modified Pd concave nanocubes in alkaline solution: An interfacial infrared spectroscopic investigation. ACS Catal. 2017, 7, 2033-2041.

8

Hong, W.; Shang, C. S.; Wang, J.; Wang, E. Bimetallic PdPt nanowire networks with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation. Energy Environ. Sci. 2015, 8, 2910-2915.

9

Zalineeva, A.; Serov, A.; Padilla, M.; Martinez, U.; Artyushkova, K.; Baranton, S.; Coutanceau, C.; Atanassov, B. P. Self-supported PdxBi catalysts for the electrooxidation of glycerol in alkaline media. J. Am. Chem. Soc. 2014, 136, 3937-3945.

10

Simões, M.; Baranton, S.; Coutanceau, C. Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration. Appl. Catal. B: Environ. 2010, 93, 354-362.

11

Bhunia, K.; Khilari, S.; Pradhan, D. Monodispersed PtPdNi trimetallic nanoparticles-integrated reduced graphene oxide hybrid platform for direct alcohol fuel cell. ACS Sustain. Chem. Eng. 2018, 6, 7769-7778.

12

Kim, H. J.; Ruqia, B.; Kang, M. S.; Lim, S. B.; Choi, R.; Nam, K. M.; Seo, W. S.; Lee, G.; Choi, S. I. Shape-controlled Pt nanocubes directly grown on carbon supports and their electrocatalytic activity toward methanol oxidation. Sci. Bull. 2017, 62, 943-949.

13

Ding, L. X.; Wang, A. L.; Li, G. R.; Liu, Z. Q.; Zhao, W. X.; Su, C. Y.; Tong, Y. X. Porous Pt-Ni-P composite nanotube arrays: Highly electroactive and durable catalysts for methanol electrooxidation. J. Am. Chem. Soc. 2012, 134, 5730-5733.

14

Xu, H.; Yan, B.; Li, S. M.; Wang, J.; Wang, C. Q.; Guo, J.; Du, Y. K. N-doped graphene supported PtAu/Pt intermetallic core/dendritic shell nanocrystals for efficient electrocatalytic oxidation of formic acid. Chem. Eng. J. 2018, 334, 2638-2646.

15

Ma, X. Y.; Chen, Y. F.; Wang, H.; Li, Q. X.; Lin, W. F.; Cai, W. B. Electrocatalytic oxidation of ethanol and ethylene glycol on cubic, octahedral and rhombic dodecahedral palladium nanocrystals. Chem. Commun. 2018, 54, 2562-2565.

16

Xu, H.; Song, P. P.; Yan, B.; Wang, J.; Wang, C. Q.; Shiraishi, Y.; Yang, P.; Du, Y. K. Pt islands on 3D nut-like PtAg nanocrystals for efficient formic acid oxidation electrocatalysis. ChemSusChem 2018, 11, 1056-1062.

17

Zhang, Y.; Zhang, J. F.; Chen, Z. L.; Liu, Y. W.; Zhang, M. M.; Han, X. P.; Zhong, C.; Hu, W. B.; Deng, Y. D. One-step synthesis of the PdPt bimetallic nanodendrites with controllable composition for methanol oxidation reaction. Sci. China Mater. 2018, 61, 697-706.

18

Li, Z. Y.; Zhou, J.; Tang, L. S.; Fu, X. P.; Wei, H.; Xue, M.; Zhao, Y. L.; Jia, C. J.; Li, X. M.; Chu, H. B. et al. Hydroxyl-rich ceria hydrate nanoparticles enhancing the alcohol electrooxidation performance of Pt catalysts. J. Mater. Chem. A 2018, 6, 2318-2326.

19

Huang, L.; Zhang, X. P.; Wang, Q. Q.; Han, Y, J.; Fang, Y. X.; Dong, S. J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 2018, 140, 1142-1147.

20

Wang, A. L.; Xu, H.; Feng, J. X.; Ding, L. X.; Tong, Y. X.; Li, G. R. Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effects and synergistic effects for ethanol electrooxidation. J. Am. Chem. Soc. 2013, 135, 10703-10709.

21

Zhang, X.; Zhu, J. X.; Tiwary, C. S.; Ma, Z. Y.; Huang, H. J.; Zhang, J. F.; Lu, Z. Y.; Huang, W.; Wu, Y. P. Palladium nanoparticles supported on nitrogen and sulfur dual-doped graphene as highly active electrocatalysts for formic acid and methanol oxidation. ACS Appl. Mater. Interfaces 2016, 8, 10858-10865.

22

Nandan R.; Nanda, K. K. A unique approach to designing resilient bifunctional nano-electrocatalysts based on ultrafine bimetallic nanoparticles dispersed in carbon nanospheres. J. Mater. Chem. A 2017, 5, 10544-10553.

23

Chen, X. M.; Wu, G. H.; Chen, J. M.; Chen, X.; Xie, Z. X.; Wang, X. R. Synthesis of "clean" and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc. 2011, 133, 3693-3695.

24

Xu, H.; Yan, B.; Zhang, K.; Wang, J.; Li, S. M.; Wang, C. Q.; Shiraishi, Y.; Du, Y. K.; Yang, P. Ultrasonic-assisted synthesis of N-doped graphene-supported binary PdAu nanoflowers for enhanced electro-oxidation of ethylene glycol and glycerol. Electrochim. Acta 2017, 245, 227-236.

25

Ahmed, M. S.; Park, D.; Jeon, S. Ultrasmall PdmMn1-mOx binary alloyed nanoparticles on graphene catalysts for ethanol oxidation in alkaline media. J. Power Sources 2016, 308, 180-188.

26

Jia, N.; Shi, Y. R.; Zhang, S. X.; Chen, X. B.; Chen, P.; An, Z. W. Carbon nanobowls supported ultrafine palladium nanocrystals: A highly active electrocatalyst for the formic acid oxidation. Int. J. Hydrogen Energy 2017, 42, 8255-8263.

27

Shenashen, M. A.; Hassen, D.; El-Safty, S. A.; Isago, H.; Elmarakbi, A.; Yamaguchi, H. Axially oriented tubercle vein and X-crossed sheet of N-Co3O4@C hierarchical mesoarchitectures as potential heterogeneous catalysts for methanol oxidation reaction. Chem. Eng. J. 2017, 313, 83-98.

28

Li, S. P.; Lai, J. P.; Luque, R.; Xu, G. B. Designed multimetallic Pd nanosponges with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation. Energy Environ. Sci. 2016, 9, 3097-3102.

29

Wang, W.; Lv, F.; Lei, B.; Wan, S.; Luo, M. C.; Guo S. J. Tuning nanowires and nanotubes for efficient fuel-cell electrocatalysis. Adv. Mater. 2016, 28, 10117-10141.

30

Xi, Z.; Erdosy, D. P.; Mendoza-Garcia, A.; Duchesne, P. N.; Li, J. R.; Muzzio, M.; Li, Q.; Zhang, P.; Sun, S. H. Pd nanoparticles coupled to WO2.72 nanorods for enhanced electrochemical oxidation of formic acid. Nano Lett. 2017, 17, 2727-2731.

31

Martins, C. A.; Fernández, P. S.; de Lima, F.; Troiani, H. E.; Martins, M. E.; Arenillas, A.; Maia, G.; Camara, G. A. Remarkable electrochemical stability of one-step synthesized Pd nanoparticles supported on graphene and multi-walled carbon nanotubes. Nano Energy 2014, 9, 142-151.

32

Begum, H.; Ahmed, M. S.; Jeon, S. Highly efficient dual active palladium nanonetwork electrocatalyst for ethanol oxidation and hydrogen evolution. ACS Appl. Mater. Interfaces 2017, 9, 39303-39311.

33

Tang, J. X.; Chen, Q. S.; You, L. X.; Liao, H. J.; Sun, S. G.; Zhou, S. G.; Xu, Z. N.; Chen, Y. M.; Guo, G. C. Screw-like PdPt nanowires as highly efficient electrocatalysts for methanol and ethylene glycol oxidation. J. Mater. Chem. A 2018, 6, 2327-2336.

34

Fashedemi, O. O.; Miller, H. A.; Marchionni, A.; Vizza, F.; Ozoemen, K. I. Electro-oxidation of ethylene glycol and glycerol at palladium-decorated FeCo@Fe core-shell nanocatalysts for alkaline direct alcohol fuel cells: Functionalized MWCNT supports and impact on product selectivity. J. Mater. Chem. A 2015, 3, 7145-7156.

35

Li, Z. H.; Ye, L. T.; Wang, Y. L.; Xu, S. H.; Lei, F. L.; Lin, S. Visible light assisted electro-photo synergistic catalysis of heterostructured Pd-Ag NPs/graphene for methanol oxidation. RSC Adv. 2016, 6, 79533-79541.

36

Yang, Y.; Wang, W.; Liu, Y. Q.; Wang, F. X.; Zhang, Z.; Lei, Z. Q. Carbon supported heterostructured Pd-Ag nanoparticle: Highly active electrocatalyst for ethylene glycol oxidation. Int. J. Hydrogen Energy 2015, 40, 2225-2230.

37

Li, L. Z.; Chen, M. X.; Huang, G. B.; Yang, N.; Zhang, L.; Wang, H.; Liu, Y.; Wang, W.; Gao, J. P. A green method to prepare Pd-Ag nanoparticles supported on reduced graphene oxide and their electrochemical catalysis of methanol and ethanol oxidation. J. Power Sources 2014, 263, 13-21.

38

Yang, Y.; Wang, W.; Liu, Y. Q.; Wang, F. X.; Chai, D.; Lei, Z. Q. Pd nanoparticles supported on phenanthroline modified carbon as high active electrocatalyst for ethylene glycol oxidation. Electrochim. Acta 2015, 154, 1-8.

39

Asset, T.; Serov, A.; Padilla, M.; Roy, A. J.; Matanovic, I.; Chatenet, M.; Maillard, F.; Atanassov, P. Design of Pd-Pb catalysts for glycerol and ethylene glycol electrooxidation in alkaline medium. Electrocatalysis 2018, 9, 480-485.

40

Wang, H. B.; Thia, L.; Li, N.; Ge, X. M.; Liu, Z. L.; Wang, X. Pd nanoparticles on carbon nitride-graphene for the selective electro-oxidation of glycerol in alkaline solution. ACS Catal. 2015, 5, 3174-3180.

41

Chai, D.; Wang, W.; Dong, W. K.; Kang, Y. M.; Dong, Y. J.; Lei, Z. Q. Facile synthesis of a ternary Pd-P-B nanoalloy: Enhanced catalytic performance towards ethylene glycol electrooxidation. Appl. Catal. A: Gen. 2016, 525, 1-8.

42

Carvalho, L. L.; Colmati, F.; Tanaka, A. A. Nickel-palladium electrocatalysts for methanol, ethanol, and glycerol oxidation reactions. Int. J. Hydrogen Energy 2017, 42, 16118-16126.

43

Bambagioni, V.; Bianchini, C.; Marchionni, A.; Filippi, J.; Vizza, F.; Teddy, J.; Serp, P.; Zhiani, M. Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol). J. Power Sources 2009, 190, 241-251.

44

Xu, H.; Song, P. P.; Fernandez, C.; Wang, J.; Zhu, M. S.; Shiraishi, Y.; Du, Y. K. Sophisticated construction of binary PdPb alloy nanocubes as robust electrocatalysts toward ethylene glycol and glycerol oxidation. ACS Appl. Mater. Interfaces 2018, 10, 12659-12665.

45

Li, H.; Zhang, Y. Y.; Wan, Q. J.; Li, Y. W.; Yang, N. J. Expanded graphite and carbon nanotube supported palladium nanoparticles for electrocatalytic oxidation of liquid fuels. Carbon 2018, 131, 111-119.

46

Song, P.; Feng, J. J.; Guo, F. Y.; Wang, A. J. Simple polyol synthesis of porous coral-like palladium-silver alloy nanostructures with enhanced electrocatalytic activity for glycerol oxidation reaction. J. Mater. Chem. A 2015, 3, 15920-15926.

47

Yan, S. H.; Zhang, S. C.; Lin, Y.; Liu, G. R. Electrocatalytic performance of gold nanoparticles supported on activated carbon for methanol oxidation in alkaline solution. J. Phys. Chem. C 2011, 115, 6986-6993.

48

Yang, Y.; Jin, L.; Liu, B.; Kerns, P.; He, J. Direct growth of ultrasmall bimetallic AuPd nanoparticles supported on nitrided carbon towards ethanol electrooxidation. Electrochim. Acta 2018, 269, 441-451.

49

Dector, A.; Cuevas-Muñiz, F. M.; Guerra-Balcázar, M.; Godínez, L. A.; Ledesma-García, J.; Arriaga, L. G. Glycerol oxidation in a microfluidic fuel cell using Pd/C and Pd/MWCNT anodes electrodes. Int. J. Hydrogen Energy 2013, 38, 12617-12622.

50

Simpson, D. E.; Juda, K. E.; Roy, D. Electroanalytical assessment of the function of nickel in alkaline electrocatalysis of glycerol. Electrocatalysis 2018, 9, 86-101.

51

Wu, Y. M.; Han, S. H.; Huang, Y.; Shi, Y. M.; Zhang, B. Boosting ethanol electrooxidation via photothermal effect over palladium/reduced graphene oxide. J. Mater. Chem. A, 2018, 6, 18426-18429.

52

Ren, H. Y.; Tang, M.; Guan, B. L.; Wang, K. X.; Yang, J. W.; Wang, F. F.; Wang, M. Z.; Shan, J. Y.; Chen, Z. L.; Wei, D. et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 2017, 29, 1702590.

File
12274_2018_2222_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 August 2018
Revised: 08 October 2018
Accepted: 10 October 2018
Published: 27 October 2018
Issue date: February 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 21675032), the Fundamental Research Funds for the Central Universities and DHU Distinguished Young Professor Program.

Return