Journal Home > Volume 12 , Issue 2

Lithium-oxygen batteries have attracted considerable interest in the past a few years, because they have higher theoretical specific energy than Li-ion batteries. However, the available energy densities of the Li-O2 batteries are much less than expected. It is particularly urgent to find catalyst with high activity. Herein, a series of Co3O4 with different morphologies (ordered two-dimensional porous nanosheets, flowerlike and cuboidlike) were successfully prepared through facile hydrothermal and calcination methods. Ordered two-dimensional Co3O4 nanosheets show the best cycling stability. Detailed experimental results reveal that the superiority of the unique two-dimensional uniform porous structures is vital for Li-O2 batteries cathode catalysts. Due to the ordered structures with high surface areas and active sites, the catalysts indicate a high specific discharge capacity of about 10, 417 mAh/g at a current density of 200 mA/g, and steadily cycle for more than 50 times with a limited capacity of 1, 000 mAh/g.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ordered two-dimensional porous Co3O4 nanosheets as electrocatalysts for rechargeable Li-O2 batteries

Show Author's information Yu Zhang1,§Mingzhen Hu2,3,§Mengwei Yuan1Genban Sun1Yufeng Li1Kebin Zhou2Chen Chen3Caiyun Nan1( )Yadong Li3
College of Chemistry,Beijing Normal University,Beijing,100875,China;
School of Chemical Sciences,University of Chinese Academy of Sciences,Beijing,100049,China;
Department of Chemistry,Tsinghua University,Beijing,100084,China;

§Yu Zhang and Mingzhen Hu contributed equally to this work.

Abstract

Lithium-oxygen batteries have attracted considerable interest in the past a few years, because they have higher theoretical specific energy than Li-ion batteries. However, the available energy densities of the Li-O2 batteries are much less than expected. It is particularly urgent to find catalyst with high activity. Herein, a series of Co3O4 with different morphologies (ordered two-dimensional porous nanosheets, flowerlike and cuboidlike) were successfully prepared through facile hydrothermal and calcination methods. Ordered two-dimensional Co3O4 nanosheets show the best cycling stability. Detailed experimental results reveal that the superiority of the unique two-dimensional uniform porous structures is vital for Li-O2 batteries cathode catalysts. Due to the ordered structures with high surface areas and active sites, the catalysts indicate a high specific discharge capacity of about 10, 417 mAh/g at a current density of 200 mA/g, and steadily cycle for more than 50 times with a limited capacity of 1, 000 mAh/g.

Keywords: two-dimensional, Co3O4, porous, Li-O2 battery, ordered

References(34)

1

Ma, Z.; Yuan, X. X.; Li, L.; Ma, Z. F.; Wilkinson, D. P.; Zhang, L.; Zhang, J. J. A review of cathode materials and structures for rechargeable lithium-air batteries. Energy Environ. Sci. 2015, 8, 2144–2198.

2

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

3

Li, F. J.; Zhang, T.; Zhou, H. S. Challenges of non-aqueous Li-O2 batteries: Electrolytes, catalysts, and anodes. Energy Environ. Sci. 2013, 6, 1125–1141.

4

Xie, J.; Yao, X. H.; Cheng, Q. M.; Madden, I. P.; Dornath, P.; Chang, C. C.; Fan, W.; Wang, D. W. Three dimensionally ordered mesoporous carbon as a stable, high-performance Li-O2 battery cathode. Angew. Chem., Int. Ed. 2015, 54, 4299–4303.

5

Peng, Z. Q.; Freunberger, S. A.; Chen, Y. H.; Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 2012, 337, 563–566.

6

Luo, X. Y.; Amine, R.; Lau, K. C.; Lu, J.; Zhan, C.; Curtiss, L. A.; Al Hallaj, S.; Chaplin, B. P.; Amine, K. Mass and charge transport relevant to the formation of toroidal lithium peroxide nanoparticles in an aprotic lithium-oxygen battery: An experimental and theoretical modeling study. Nano Res. 2017, 10, 4327–4336.

7

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

8

Guo, X. W.; Liu, P.; Han, J. H.; Ito, Y.; Hirata, A.; Fujita, T.; Chen, M. W. 3D nanoporous nitrogen-doped graphene with encapsulated RuO2 nanoparticles for Li-O2 batteries. Adv. Mater. 2015, 27, 6137–6143.

9

Jian, Z.; Liu, P.; Li, F.; He, P.; Guo, X.; Chen, M.; Zhou, H. Core-shell- structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew. Chem., Int. Ed. 2014, 53, 442–446.

10

Tan, P.; Wei, Z. H.; Shyy, W.; Zhao, T. S.; Zhu, X. B. A nano-structured RuO2/NiO cathode enables the operation of non-aqueous lithium-air batteries in ambient air. Energy Environ. Sci. 2016, 9, 1783–1793.

11

Luo, X. Y.; Lu, J.; Sohm, E.; Ma, L.; Wu, T. P.; Wen, J. G.; Qiu, D. T.; Xu, Y. K.; Ren, Y.; Miller, D. J. et al. Uniformly dispersed FeOx atomic clusters by pulsed arc plasma deposition: An efficient electrocatalyst for improving the performance of Li–O2 battery. Nano Res. 2016, 9, 1913–1920.

12

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

13

Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M. et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv. Mater. 2015, 27, 5241–5247.

14

Wu, S. C.; Qiao, Y.; Yang, S. X.; Ishida, M.; He, P.; Zhou, H. S. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes. Nat. Commun. 2017, 8, 15607.

15

Prinz, J.; Pignedoli, C. A.; Stöckl, Q. S.; Armbrüster, M.; Brune, H.; Gröning, O.; Widmer, R.; Passerone, D. Adsorption of small hydrocarbons on the three-fold PdGa surfaces: The road to selective hydrogenation. J. Am. Chem. Soc. 2014, 136, 11792–11798.

16

Sun, B.; Chen, S. Q.; Liu, H.; Wang, G. X. Mesoporous carbon nanocube architecture for high-performance lithium-oxygen batteries. Adv. Funct. Mater. 2015, 25, 4436–4444.

17

Guo, Z. Y.; Zhou, D. D.; Dong, X. L.; Qiu, Z. J.; Wang, Y. G.; Xia, Y. Y. Ordered hierarchical mesoporous/macroporous carbon: A high-performance catalyst for rechargeable Li-O2 batteries. Adv. Mater. 2013, 25, 5668–5672.

18

Mohamed, S. G.; Tsai, Y. Q.; Chen, C. J.; Tsai, Y. T.; Hung, T. F.; Chang, W. S.; Liu, R. S. Ternary spinel MCo2O4 (M = Mn, Fe, Ni, and Zn) porous nanorods as bifunctional cathode materials for lithium-O2 batteries. ACS Appl. Mater. Interfaces 2015, 7, 12038–12046.

19

Han, X. P.; Cheng, F. Y.; Chen, C. C.; Hu, Y. X.; Chen, J. Uniform MnO2 nanostructures supported on hierarchically porous carbon as efficient electrocatalysts for rechargeable Li-O2 batteries. Nano Res. 2015, 8, 156–164.

20

Luo, J. R.; Yao, X. H.; Yang, L.; Han, Y.; Chen, L.; Geng, X. M.; Vattipalli, V.; Dong, Q.; Fan, W.; Wang, D. W. et al. Free-standing porous carbon electrodes derived from wood for high-performance Li-O2 battery applications. Nano Res. 2017, 10, 4318–4326.

21

He, T.; Ni, B.; Zhang, S. M.; Gong, Y.; Wang, H. Q.; Gu, L.; Zhuang, J.; Hu, W. P.; Wang, X. Ultrathin 2D zirconium metal-organic framework nanosheets: Preparation and application in photocatalysis. Small 2018, 14, 1703929.

22

Li, K. K.; Jiao, T. F.; Xing, R. R.; Zou, G. D.; Zhou, J. X.; Zhang, L. X.; Peng, Q. M. Fabrication of tunable hierarchical MXene@AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. Sci. China Mater. 2018, 61, 728–736.

23

Wang, X.; Weng, Q. H.; Yang, Y. J.; Bando, Y.; Golberg, D. Hybrid two- dimensional materials in rechargeable battery applications and their microscopic mechanisms. Chem. Soc. Rev. 2016, 45, 4042–4073.

24

Qin, J. Q.; Zhou, F.; Xiao, H.; Ren, R. Y.; Wu, Z. S. Mesoporous polypyrrole- based graphene nanosheets anchoring redox polyoxometalate for all-solid-state micro-supercapacitors with enhanced volumetric capacitance. Sci. China Mater. 2018, 61, 233–242.

25

Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

26

Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z. P.; Dontsova, D.; Antonietti, M.; López, N.; Pérez-Ramírez, J. A stable single-site palladium catalyst for hydrogenations. Angew. Chem., Int. Ed. 2015, 54, 11265–11269.

27

Xu, S. M.; Zhu, Q. C.; Du, F. H.; Li, X. H.; Wei, X.; Wang, K. X.; Chen, J. S. Co3O4-based binder-free cathodes for lithium-oxygen batteries with improved cycling stability. Dalton Trans. 2015, 44, 8678–8684.

28

Sun, B.; Liu, H.; Munroe, P.; Ahn, H.; Wang, G. X. Nanocomposites of CoO and a mesoporous carbon (CMK-3) as a high performance cathode catalyst for lithium-oxygen batteries. Nano Res. 2012, 5, 460–469.

29

Chen, Y. M.; Yu, L.; Lou, X. W. Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem., Int. Ed. 2016, 55, 5990–5993.

30

Kong, D. Z.; Luo, J. S.; Wang, Y. L.; Ren, W. N.; Yu, T.; Luo, Y. S.; Yang, Y. P.; Cheng, C. W. Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: Morphology control and electrochemical energy storage. Adv. Funct. Mater. 2014, 24, 3815–3826.

31

Yan, Q. Y.; Li, X. Y.; Zhao, Q. D.; Chen, G. H. Shape-controlled fabrication of the porous Co3O4 nanoflower clusters for efficient catalytic oxidation of gaseous toluene. J. Hazard. Mater. 2012, 209–210, 385–391.

32

Ryu, W. H.; Yoon, T. H.; Song, S. H.; Jeon, S.; Park, Y. J.; Kim, I. D. Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li-O2 batteries. Nano Lett. 2013, 13, 4190–4197.

33

Hu, L. H.; Peng, Q.; Li, Y. D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 2008, 130, 16136–16137.

34

Armelao, L.; Barreca, D.; Gross, S.; Tondello, E. Sol-gel and CVD Co3O4 thin films characterized by XPS. Surf. Sci. Spectra 2001, 8, 14–23.

File
12274_2018_2214_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 July 2018
Revised: 24 September 2018
Accepted: 27 September 2018
Published: 10 October 2018
Issue date: February 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21606021) and Youth Scholars Program of Beijing Normal University (No. 2014NT07).

Return