Journal Home > Volume 12 , Issue 2

Despite the improvement in sensing technologies, detection of small and highly reactive molecules like formaldehyde remains a highly challenging area of research. Applications of nanomaterials/nanostructures and their composites have increased as effective sensing platforms (e.g., reaction time, sensitivity, and selectivity) for the detection of aqueous or gaseous formaldehyde based on diverse sensing principles. In this review, the basic aspects of important nanomaterial-based sensing systems (e.g., electrochemical, electrical, biological, and mass variation sensors) were evaluated in relation to performance, cost, and practicality of sensing gas phase formaldehyde. Accordingly, existing knowledge gaps in such applications were assessed in various respects along with suitable recommendations for building a new roadmap for the expansion of chemical sensing technology of gas phase formaldehyde.


menu
Abstract
Full text
Outline
About this article

Nanomaterials for sensing of formaldehyde in air: Principles, applications, and performance evaluation

Show Author's information Deepak Kukkar1,2Kowsalya Vellingiri3Rajnish Kaur4Sanjeev Kumar Bhardwaj4Akash Deep4( )Ki-Hyun Kim2( )
Department of Nanotechnology,Sri Guru Granth Sahib World University, Fatehgarh Sahib,Punjab,140406,India;
Department of Civil and Environmental Engineering,Hanyang University,Seoul,04763,Republic of Korea;
Environmental and Water Resources Engineering Division,Department of Civil Engineering,Chennai,600 036,India;
Central Scientific Instruments Organization (CSIR-CSIO),Sector 30 C,Chandigarh,160030,India;

Abstract

Despite the improvement in sensing technologies, detection of small and highly reactive molecules like formaldehyde remains a highly challenging area of research. Applications of nanomaterials/nanostructures and their composites have increased as effective sensing platforms (e.g., reaction time, sensitivity, and selectivity) for the detection of aqueous or gaseous formaldehyde based on diverse sensing principles. In this review, the basic aspects of important nanomaterial-based sensing systems (e.g., electrochemical, electrical, biological, and mass variation sensors) were evaluated in relation to performance, cost, and practicality of sensing gas phase formaldehyde. Accordingly, existing knowledge gaps in such applications were assessed in various respects along with suitable recommendations for building a new roadmap for the expansion of chemical sensing technology of gas phase formaldehyde.

Keywords: sensing, nanomaterials, formaldehyde, hazardous, pollutant

References(183)

1

Leikauf, G. D. Formaldehyde and other aldehydes. In Environmental Toxicants; Lippmann, M., Ed.; John Wiley & Sons, Inc. : Hoboken, NJ, USA, 2008; pp 257–316.

2

Dong, S.; Dasgupta, P. K. Solubility of gaseous formaldehyde in liquid water and generation of trace standard gaseous formaldehyde. Environ. Sci. Technol. 1986, 20, 637–640.

3

McGregor, D.; Bolt, H.; Cogliano, V.; Richter-Reichhelm, H. B. Formaldehyde and glutaraldehyde and nasal cytotoxicity: Case study within the context of the 2006 IPCS human framework for the analysis of a cancer mode of action for humans. Crit. Rev. Toxicol. 2006, 36, 821–835.

4

Salthammer, T.; Mentese, S.; Marutzky, R. Formaldehyde in the indoor environment. Chem. Rev. 2010, 110, 2536–2572.

5

Edrissi, B.; Taghizadeh, K.; Moeller, B. C.; Yu, R.; Kracko, D.; Doyle- Eisele, M.; Swenberg, J. A.; Dedon, P. C. N6-Formyllysine as a biomarker of formaldehyde exposure: Formation and loss of N6-formyllysine in nasal epithelium in long-term, low-dose inhalation studies in rats. Chem. Res. Toxicol. 2017, 30, 1572–1576.

6

Chung, P. R.; Tzeng, C. T.; Ke, M. T.; Lee, C. Y. Formaldehyde gas sensors: A review. Sensors 2013, 13, 4468–4484.

7

Allouch, A.; Guglielmino, M.; Bernhardt, P.; Serra, C. A.; Le Calvé, S. Transportable, fast and high sensitive near real-time analyzers: Formaldehyde detection. Sens. Actuators B Chem. 2013, 181, 551–558.

8

Xu, Z. Q.; Chen, J. H.; Hu, L. L.; Tan, Y.; Liu, S. H.; Yin, J. Recent advances in formaldehyde-responsive fluorescent probes. Chin. Chem. Lett. 2017, 28, 1935–1942.

9

Canha, N.; Lage, J.; Candeias, S.; Alves, C.; Almeida, S. M. Indoor air quality during sleep under different ventilation patterns. Atmos. Pollut. Res. 2017, 8, 1132–1142.

10

Antwi-Boampong, S.; Mani, K. S.; Carlan, J.; BelBruno, J. J. A selective molecularly imprinted polymer-carbon nanotube sensor for cotinine sensing. J. Mol. Recognit. 2014, 27, 57–63.

11

Jeong, H. S.; Chung, H.; Song, S. H.; Kim, C. I.; Lee, J. G.; Kim, Y. S. Validation and determination of the contents of acetaldehyde and formaldehyde in foods. Toxicol. Res. 2015, 31, 273–278.

12

Kim, Y. H.; Kumar, P.; Kwon, E. E.; Kim, K. H. Metal-organic frameworks as superior media for thermal desorption-gas chromatography application: A critical assessment of MOF-5 for the quantitation of airborne formaldehyde. Microchem. J. 2017, 132, 219–226.

13

Wahed, P.; Razzaq, M. A.; Dharmapuri, S.; Corrales, M. Determination of formaldehyde in food and feed by an in-house validated HPLC method. Food Chem. 2016, 202, 476–483.

14

Qin, X. C.; Wang, R.; Tsow, F.; Forzani, E.; Xian, X. J.; Tao, N. J. A colorimetric chemical sensing platform for real-time monitoring of indoor formaldehyde. IEEE Sens. J. 2015, 15, 1545–1551.

15

Zeng, J. B.; Fan, S. G.; Zhao, C. Y.; Wang, Q. R.; Zhou, T. Y.; Chen, X.; Yan, Z. F.; Li, Y. P.; Xing, W.; Wang, X. D. A colorimetric agarose gel for formaldehyde measurement based on nanotechnology involving Tollens reaction. Chem. Commun. 2014, 50, 8121–8123.

16

Woolston, B. M.; Roth, T.; Kohale, I.; Liu, D. R.; Stephanopoulos, G. Development of a formaldehyde biosensor with application to synthetic methylotrophy. Biotechnol. Bioeng. 2018, 115, 206–215.

17

Ozoner, S. K.; Erhan, E.; Yilmaz, F.; Ergenekon, P.; Anil, I. Electrochemical biosensor for detection of formaldehyde in rain water. J. Chem. Technol. Biotechnol. 2013, 88, 727–732.

18

Hou, S. C.; Zhang, A. Y.; Su, M. Nanomaterials for biosensing applications. Nanomaterials 2016, 6, 58.

19

Rowland, C. E.; Brown, C. W.; Delehanty, J. B.; Medintz, I. L. Nanomaterial-based sensors for the detection of biological threat agents. Mater. Today 2016, 19, 464–477.

20

Zeng, S. W.; Baillargeat, D.; Ho, H. P.; Yong, K. T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426–3452.

21

Ho, H. P.; Law, W. C.; Wu, S. Y.; Liu, X. H.; Wong, S. P.; Lin, C. L.; Kong, S. K. Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique. Sens. Actuators B Chem. 2006, 114, 80–84.

22

Mangum, J. G.; Darling, J.; Menten, K. M.; Henkel, C. Formaldehyde densitometry of starburst galaxies. Astrophys. J. 2008, 673, 832–846.

23

Castro-Hurtado, I.; Mandayo, G. G.; Castaño, E. Conductometric formaldehyde gas sensors. A review: From conventional films to nanostructured materials. Thin Solid Films 2013, 548, 665–676.

24

Grützner, T.; Hasse, H. Solubility of formaldehyde and trioxane in aqueous solutions. J. Chem. Eng. Data 2004, 49, 642–646.

25

Jensen, R. P.; Luo, W. T.; Pankow, J. F.; Strongin, R. M.; Peyton, D. H. Hidden formaldehyde in E-cigarette aerosols. New Engl. J. Med. 2015, 372, 392–394.

26

Tong, Z. Q.; Han, C. S.; Luo, W. H.; Wang, X. H.; Li, H.; Luo, H. J.; Zhou, J. N.; Qi, J. S.; He, R. Q. Accumulated hippocampal formaldehyde induces age-dependent memory decline. AGE 2013, 35, 583–596.

27

Bruemmer, K. J.; Brewer, T. F.; Chang, C. J. Fluorescent probes for imaging formaldehyde in biological systems. Curr. Opin. Chem. Biol. 2017, 39, 17–23.

28

Pontel, L. B.; Rosado, I. V.; Burgos-Barragan, G.; Garaycoechea, J. I.; Yu, R.; Arends, M. J.; Chandrasekaran, G.; Broecker, V.; Wei, W.; Liu, L. M. et al. Endogenous formaldehyde is a hematopoietic stem cell genotoxin and metabolic carcinogen. Mol. Cell 2015, 60, 177–188.

29

Scotti, M.; Stella, L.; Shearer, E. J.; Stover, P. J. Modeling cellular compartmentation in one-carbon metabolism. Wiley Interdiscip. Rev. Syst. Biol. Med. 2013, 5, 343–365.

30

Tralau, T.; Lafite, P.; Levy, C.; Combe, J. P.; Scrutton, N. S.; Leys, D. An internal reaction chamber in dimethylglycine oxidase provides efficient protection from exposure to toxic formaldehyde. J. Biol. Chem. 2009, 284, 17826–17834.

31

Tulpule, K.; Hohnholt, M. C.; Dringen, R. Formaldehyde metabolism and formaldehyde-induced stimulation of lactate production and glutathione export in cultured neurons. J. Neurochem. 2013, 125, 260–272.

32

Ken, C. F.; Huang, C. Y.; Wen, L. S.; Huang, J. K.; Lin, C. T. Modulation of nitrosative stress via glutathione-dependent formaldehyde dehydrogenase and S-nitrosoglutathione reductase. Int. J. Mol. Sci. 2014, 15, 14166–14179.

33

Hopkinson, R. J.; Leung, I. K. H.; Smart, T. J.; Rose, N. R.; Henry, L.; Claridge, T. D. W.; Schofield, C. J. Studies on the glutathione-dependent formaldehyde-activating enzyme from Paracoccus denitrificans. PLoS One 2015, 10, e0145085.

34

Lessmeier, L.; Hoefener, M.; Wendisch, V. F. Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase. Microbiology 2013, 159, 2651–2662.

35

Fox, J. T.; Stover, P. J. Folate–mediated one–carbon metabolism. In Vitamins & Hormones; Gerald, L., Ed.; Academic Press: New York, 2008; pp 1–44.

36

Duong, A.; Steinmaus, C.; McHale, C. M.; Vaughan, C. P.; Zhang, L. P. Reproductive and developmental toxicity of formaldehyde: A systematic review. Mutat. Res. Rev. Mutat. Res. 2011, 728, 118–138.

37

Mori, M.; Matsumoto, Y.; Kushino, N.; Morimatsu, Y.; Hoshiko, M.; Saga, T.; Yamaki, K. I.; Ishitake, T. Comparison of subjective symptoms associated with exposure to low levels of formaldehyde between students enrolled and not enrolled in a gross anatomy course. Environ. Health Prev. Med. 2016, 21, 34–41.

38

Swenberg, J. A.; Moeller, B. C.; Lu, K.; Rager, J. E.; Fry, R. C.; Starr, T. B. Formaldehyde carcinogenicity research: 30 years and counting for mode of action, epidemiology, and cancer risk assessment. Toxicol. Pathol. 2013, 41, 181–189.

39

Zhang, L. P.; Tang, X. J.; Rothman, N.; Vermeulen, R.; Ji, Z. Y.; Shen, M.; Qiu, C. Y.; Guo, W. H.; Liu, S. W.; Reiss, B. et al. Occupational exposure to formaldehyde, hematotoxicity, and leukemia-specific chromosome changes in cultured myeloid progenitor cells. Cancer Epidemiol. Biomarkers Prev. 2010, 19, 80–88.

40

Lan, Q.; Smith, M. T.; Tang, X. J.; Guo, W. H.; Vermeulen, R.; Ji, Z. Y.; Hu, W.; Hubbard, A. E.; Shen, M.; McHale, C. M. et al. Chromosome-wide aneuploidy study of cultured circulating myeloid progenitor cells from workers occupationally exposed to formaldehyde. Carcinogenesis 2015, 36, 160–167.

41

Albertini, R. J.; Kaden, D. A. Do chromosome changes in blood cells implicate formaldehyde as a leukemogen? Crit. Rev. Toxicol. 2017, 47, 145–184.

42

Hipkiss, A. R. Depression, diabetes and dementia: Formaldehyde may be a common causal agent; could carnosine, a pluripotent peptide, be protective? Aging Dis. 2017, 8, 128–130.

43

Akshath, U. S.; Bhatt, P. Supramolecular nano-sniffers for ultrasensitive detection of formaldehyde. Biosens. Bioelectron. 2018, 100, 201–207.

44

Gu, D. C.; Zou, M. J.; Guo, X. X.; Yu, P.; Lin, Z. W.; Hu, T.; Wu, Y. F.; Liu, Y.; Gan, J. H.; Sun, S. Q. et al. A rapid analytical and quantitative evaluation of formaldehyde in squid based on Tri-step IR and partial least squares (PLS). Food Chem. 2017, 229, 458–463.

45

El Sayed, S.; Pascual, L.; Licchelli, M.; Martínez-Máñez, R.; Gil, S.; Costero, A. M.; Sancenón, F. Chromogenic detection of aqueous formaldehyde using functionalized silica nanoparticles. ACS Appl. Mater. Interfaces 2016, 8, 14318–14322.

46

Baez-Gaxiola, M. R.; Fernández-Sánchez, C.; Mendoza, E. Gold cluster based electrocatalytic sensors for the detection of formaldehyde. Anal. Methods 2015, 7, 538–542.

47

Zhang, T. Y.; Qin, L. X.; Kang, S. Z.; Li, G. D.; Li, X. Q. Novel reduced graphene oxide/Ag nanoparticle composite film with sensitive detection activity towards trace formaldehyde. Sens. Actuators B Chem. 2017, 242, 1129–1132.

48

Huang, L. Z.; Wang, Z.; Zhu, X. F.; Chi, L. F. Electrical gas sensors based on structured organic ultra-thin films and nanocrystals on solid state substrates. Nanoscale Horiz. 2016, 1, 383–393.

49

Tai, H. L.; Li, X.; Jiang, Y. D.; Xie, G. Z.; Du, X. S. The enhanced formaldehyde-sensing properties of P3HT-ZnO hybrid thin film OTFT sensor and further insight into its stability. Sensors 2015, 15, 2086–2103.

50

Wang, L. Y; Wang, Z. X; Xiang, Q.; Chen, Y.; Duan, Z. M; Xu, J. Q. High performance formaldehyde detection based on a novel copper (Ⅱ) complex functionalized QCM gas sensor. Sens. Actuators B Chem. 2017, 248, 820–828.

51

Mishra, R. K.; Kushwaha, A.; Sahay, P. P. Influence of Cu doping on the structural, photoluminescence and formaldehyde sensing properties of SnO2 nanoparticles. RSC Adv. 2014, 4, 3904–3912.

52

Shen, J. L.; Guo, S. J.; Chen, C.; Sun, L.; Wen, S. P.; Chen, Y.; Ruan, S. P. Synthesis of Ni-doped α-MoO3 nanolamella and their improved gas sensing properties. Sens. Actuators B Chem. 2017, 252, 757–763.

53

Zhou, T. T.; Zhang, T.; Zhang, R.; Lou, Z.; Deng, J. N.; Wang, L. L. Hollow ZnSnO3 cubes with controllable shells enabling highly efficient chemical sensing detection of formaldehyde vapors. ACS Appl. Mater. Interfaces 2017, 9, 14525–14533.

54

Korotcenkov, G.; Brinzari, V.; Cho, B. K. Conductometric gas sensors based on metal oxides modified with gold nanoparticles: A review. Microchim. Acta 2016, 183, 1033–1054.

55

Ojani, R.; Raoof, J. B.; Safshekan, S. Photoinduced deposition of palladium nanoparticles on TiO2 nanotube electrode and investigation of its capability for formaldehyde oxidation. Electrochim. Acta 2014, 138, 468–475.

56

Wang, X. S.; Zhang, J. B.; He, Y.; Wang, L. Y.; Liu, L.; Wang, H.; Guo, X. X.; Lian, H. W. Porous Nd-doped In2O3 nanotubes with excellent formaldehyde sensing properties. Chem. Phys. Lett. 2016, 658, 319–323.

57

Stradiotto, N. R.; Yamanaka, H.; Zanoni, M. V. B. Electrochemical sensors: A powerful tool in analytical chemistry. J. Braz. Chem. Soc. 2003, 14, 159–173.

58

Wang, Q.; Zheng, J. B.; Zhang, H. F. A novel formaldehyde sensor containing AgPd alloy nanoparticles electrodeposited on an ionic liquid– chitosan composite film. J. Electroanal. Chem. 2012, 674, 1–6.

59

Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors—Sensor principles and architectures. Sensors 2008, 8, 1400–1458.

60

Aragay, G.; Pino, F.; Merkoçi, A. Nanomaterials for sensing and destroying pesticides. Chem. Rev. 2012, 112, 5317–5338.

61

Maduraiveeran, G.; Jin, W. Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends Environ. Anal. Chem. 2017, 13, 10–23.

62

Zhang, W. Y.; Asiri, A. M.; Liu, D. L.; Du, D.; Lin, Y. H. Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. TrAC Trends Anal. Chem. 2014, 54, 1–10.

63

Monkawa, A.; Gessei, T.; Takimoto, Y.; Jo, N.; Wada, T.; Sanari, N. Highly sensitive and rapid gas biosensor for formaldehyde based on an enzymatic cycling system. Sens. Actuators B Chem. 2015, 210, 241–247.

64

Fauzia, V.; Imawan, N. C.; Narayani, N. M. M. S.; Putri, A. E. A localized surface plasmon resonance enhanced dye-based biosensor for formaldehyde detection. Sens. Actuators B Chem. 2018, 257, 1128–1133.

65

Noor Aini, B.; Siddiquee, S.; Ampon, K. Development of formaldehyde biosensor for determination of formalin in fish samples; malabar red snapper (Lutjanus malabaricus) and longtail tuna (Thunnus tonggol). Biosensors 2016, 6, 32.

66

Marzuki, N.; Bakar, F. A.; Salleh, A. B.; Heng, L. Y.; Yusof, N. A.; Siddiquee, S. Electrochemical biosensor immobilization of formaldehyde dehydrogenase with nafion for determination of formaldehyde from indian mackerel (Rastrelliger kanagurta) fish. Curr. Anal. Chem. 2012, 8, 534–542.

67

Nguyen-Boisse, T. T.; Saulnier, J.; Jaffrezic-Renault, N.; Lagarde, F. Miniaturised enzymatic conductometric biosensor with Nafion membrane for the direct determination of formaldehyde in water samples. Anal. Bioanal. Chem. 2014, 406, 1039–1048.

68

Bareket, L.; Rephaeli, A.; Berkovitch, G.; Nudelman, A.; Rishpon, J. Carbon nanotubes based electrochemical biosensor for detection of formaldehyde released from a cancer cell line treated with formaldehyde-releasing anticancer prodrugs. Bioelectrochemistry 2010, 77, 94–99.

69

Premaratne, G.; Farias, S.; Krishnan, S. Pyrenyl carbon nanostructures for ultrasensitive measurements of formaldehyde in urine. Anal. Chim. Acta 2017, 970, 23–29.

70

Shimomura, T.; Itoh, T.; Sumiya, T.; Mizukami, F.; Ono, M. Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials. Sens. Actuators B Chem. 2008, 135, 268–275.

71

Achmann, S.; Hämmerle, M.; Moos, R. Amperometric enzyme-based biosensor for direct detection of formaldehyde in the gas phase: Dependence on electrolyte composition. Electroanalysis 2008, 20, 410–417.

72

Dai, H.; Gong, L. S.; Xu, G. F.; Li, X. H.; Zhang, S. P.; Lin, Y. Y.; Zeng, B. S.; Yang, C. P.; Chen, G. N. An electrochemical impedimetric sensor based on biomimetic electrospun nanofibers for formaldehyde. Analyst 2015, 140, 582–589.

73

Barsukov, Y.; Macdonald, J. R. Electrochemical impedance spectroscopy. In Characterization of Materials; Kaufmann, E. N., Ed.; John Wiley & Sons, Inc. : Hoboken, NJ, USA, 2012.

74

Kannan, P. K.; Saraswathi, R. An impedance sensor for the detection of formaldehyde vapor using ZnO nanoparticles. J. Mater. Res. 2017, 32, 2800–2809.

75

Liu, Y. X.; Parisi, J.; Sun, X. C.; Lei, Y. Solid-state gas sensors for high temperature applications—A review. J. Mater. Chem. A 2014, 2, 9919–9943.

76

Pasierb, P.; Rekas, M. Solid-state potentiometric gas sensors—Current status and future trends. J. Solid State Electrochem. 2009, 13, 3–25.

77

Volkov, A.; Gorbova, E.; Vylkov, A.; Medvedev, D.; Demin, A.; Tsiakaras, P. Design and applications of potentiometric sensors based on proton- conducting ceramic materials. A brief review. Sens. Actuators B Chem. 2017, 244, 1004–1015.

78

Kaisti, M. Detection principles of biological and chemical FET sensors. Biosens. Bioelectron. 2017, 98, 437–448.

79

Shoorideh, K.; Chui, C. O. On the origin of enhanced sensitivity in nanoscale FET-based biosensors. Proc. Natl. Acad. Sci. USA 2014, 111, 5111–5116.

80

Mao, S.; Chang, J. B.; Pu, H. H.; Lu, G. H.; He, Q. Y.; Zhang, H.; Chen, J. H. Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem. Soc. Rev. 2017, 46, 6872–6904.

81

Ramgir, N. S.; Yang, Y.; Zacharias, M. Nanowire-based sensors. Small 2010, 6, 1705–1722.

82

Han, Z. J.; Mehdipour, H.; Li, X. G.; Shen, J.; Randeniya, L.; Yang, H. Y.; Ostrikov, K. SWCNT networks on nanoporous silica catalyst support: Morphological and connectivity control for nanoelectronic, gas-sensing, and biosensing devices. ACS Nano 2012, 6, 5809–5819.

83

Hosseini, M. S.; Zeinali, S.; Sheikhi, M. H. Fabrication of capacitive sensor based on Cu-BTC (MOF-199) nanoporous film for detection of ethanol and methanol vapors. Sens. Actuators B Chem. 2016, 230, 9–16.

84

Igreja, R.; Dias, C. J. Dielectric response of interdigital chemocapacitors: The role of the sensitive layer thickness. Sens. Actuators B Chem. 2006, 115, 69–78.

85

Zhang, F. J.; Qu, G.; Mohammadi, E.; Mei, J. G.; Diao, Y. Solution- processed nanoporous organic semiconductor thin films: Toward health and environmental monitoring of volatile markers. Adv. Funct. Mater. 2017, 27, 1701117.

86

Chang, J. J.; Lin, Z. H.; Li, J.; Lim, S. L.; Wang, F.; Li, G. Q.; Zhang, J.; Wu, J. S. Enhanced polymer thin film transistor performance by carefully controlling the solution self-assembly and film alignment with slot die coating. Adv. Electron. Mater. 2015, 1, 1500036.

87

Yang, R. D.; Gredig, T.; Colesniuc, C. N.; Park, J.; Schuller, I. K.; Trogler, W. C.; Kummel, A. C. Ultrathin organic transistors for chemical sensing. Appl. Phys. Lett. 2007, 90, 263506.

88

Li, B.; Lambeth, D. N. Chemical sensing using nanostructured polythiophene transistors. Nano Lett. 2008, 8, 3563–3567.

89

Vishinkin, R.; Haick, H. Nanoscale sensor technologies for disease detection via volatolomics. Small 2015, 11, 6142–6164.

90

Gautschi, G. Background of piezoelectric sensors. In Piezoelectric Sensorics: Force Strain Pressure Acceleration and Acoustic Emission Sensors Materials and Amplifiers; Gautschi, G., Ed.; Springer: Berlin, Heidelberg, 2002; pp 5–11.

91

Liu, G. M.; Zhang, G. Z. Basic principles of QCM-D. In QCM-D Studies on Polymer Behavior at Interfaces; Liu, G. M.; Zhang, G. Z., Eds.; Springer: Berlin, Heidelberg, 2013; pp 1–8.

92

Bunde, R. L.; Jarvi, E. J.; Rosentreter, J. J. A piezoelectric method for monitoring formaldehyde induced crosslink formation between poly-lysine and poly-deoxyguanosine. Talanta 2000, 51, 159–171.

93

Seo, H.; Jung, S.; Jeon, S. Detection of formaldehyde vapor using mercaptophenol-coated piezoresistive cantilevers. Sens. Actuators B Chem. 2007, 126, 522–526.

94

Yao, Y.; Xue, Y. J. Impedance analysis of quartz crystal microbalance humidity sensors based on nanodiamond/graphene oxide nanocomposite film. Sens. Actuators B Chem. 2015, 211, 52–58.

95

Wang, N.; Wang, X. F.; Jia, Y. T.; Li, X. Q.; Yu, J. Y.; Ding, B. Electrospun nanofibrous chitosan membranes modified with polyethyleneimine for formaldehyde detection. Carbohydr. Polym. 2014, 108, 192–199.

96

Yan, D.; Xu, P. C.; Xiang, Q.; Mou, H. R.; Xu, J. Q.; Wen, W. J.; Li, X. X.; Zhang, Y. Polydopamine nanotubes: Bio-inspired synthesis, formaldehyde sensing properties and thermodynamic investigation. J. Mater. Chem. A 2016, 4, 3487–3493.

97

Su, S.; Wu, W. H.; Gao, J. M.; Lu, J. X.; Fan, C. H. Nanomaterials-based sensors for applications in environmental monitoring. J. Mater. Chem. 2012, 22, 18101–18110.

98

Zhang, Y. D.; Guo, S. S.; Zheng, Z. Nanocrystalline Ho3+-doped WO3: A promising material for acetone detection. J. Exp. Nanosci. 2013, 8, 184–193.

99

Chae, H.; Song, D.; Lee, Y. G.; Son, T.; Cho, W.; Pyun, Y. B.; Kim, T. Y.; Lee, J. H.; Fabregat-Santiago, F.; Bisquert, J. et al. Chemical effects of tin oxide nanoparticles in polymer electrolytes-based dye-sensitized solar cells. J. Phys. Chem. C 2014, 118, 16510–16517.

100

Zheng, H. D.; Tachibana, Y.; Kalantar-Zadeh, K. Dye-sensitized solar cells based on WO3. Langmuir 2010, 26, 19148–19152.

101

Mahalingam, S.; Abdullah, H.; Ashaari, I.; Shaari, S.; Muchtar, A. Optical, morphology and electrical properties of In2O3 incorporating acid-treated single-walled carbon nanotubes based DSSC. J. Phys. D Appl. Phys. 2016, 49, 075601.

102

Han, D. M.; Zhai, L. L.; Gu, F. B.; Wang, Z. H. Highly sensitive NO2 gas sensor of ppb-level detection based on In2O3 nanobricks at low temperature. Sens. Actuators B Chem. 2018, 262, 655–663.

103

Jakob, M. H.; Dong, B.; Gutsch, S.; Chatelle, C.; Krishnaraja, A.; Weber, W.; Zacharias, M. Label-free SnO2 nanowire FET biosensor for protein detection. Nanotechnology 2017, 28, 245503.

104

Welearegay, T. G.; Calavia, R.; Ionescu, R.; Llobet, E. Gas sensing approaches based on WO3 nanowire-back gated devices. Proceedings 2017, 1, 437.

105

Singh, N.; Gupta, R. K.; Lee, P. S. Gold-nanoparticle-functionalized In2O3 Nanowires as CO gas sensors with a significant enhancement in response. ACS Appl. Mater. Interfaces 2011, 3, 2246–2252.

106

Yu, H.; Yang, T. Y.; Wang, Z. Y.; Li, Z. F.; Xiao, B. X.; Zhao, Q.; Zhang, M. Z. Facile synthesis cedar-like SnO2 hierarchical micro-nanostructures with improved formaldehyde gas sensing characteristics. J. Alloys Compd. 2017, 724, 121–129.

107

Lin, Y.; Wei, W.; Li, Y. J.; Li, F.; Zhou, J. R.; Sun, D. M.; Chen, Y.; Ruan, S. P. Preparation of Pd nanoparticle-decorated hollow SnO2 nanofibers and their enhanced formaldehyde sensing properties. J. Alloys Compd. 2015, 651, 690–698.

108

Bo, Z.; Yuan, M.; Mao, S.; Chen, X.; Yan, J. H.; Cen, K. F. Decoration of vertical graphene with tin dioxide nanoparticles for highly sensitive room temperature formaldehyde sensing. Sens. Actuators B. Chem. 2018, 256, 1011–1020.

109

Chen, S.; Qiao, Y.; Huang, J. L.; Yao, H. L.; Zhang, Y. L.; Li, Y.; Du, J. P.; Fan, W. B. One-pot synthesis of mesoporous spherical SnO2@graphene for high-sensitivity formaldehyde gas sensors. RSC Adv. 2016, 6, 25198–25202.

110

Wang, Y.; Jiang, D. S.; Wei, W.; Zhu, L. H.; Zhou, J. R.; Sun, D. M.; Ruan, S. P. Applications for rapid formaldehyde nanoreactor with hierarchical and spherical structure. Sens. Actuators B Chem. 2016, 227, 475–481.

111

Li, S. H.; Liu, Y. K.; Wu, Y. M.; Chen, W. W.; Qin, Z. J.; Gong, N. L.; Yu, D. P. Highly sensitive formaldehyde resistive sensor based on a single Er-doped SnO2 nanobelt. Physica B Condens. Matter 2016, 489, 33–38.

112

Wang, T. Q.; Sun, Z. X.; Wang, Y.; Liu, R.; Sun, M. H.; Xu, L. Enhanced photoelectric gas sensing performance of SnO2 flower-like nanorods modified with polyoxometalate for detection of volatile organic compound at room temperature. Sens. Actuators B Chem. 2017, 246, 769–775.

113

Choi, Y. H.; Kim, D. H.; Han, H. S.; Shin, S.; Hong, S. H.; Hong, K. S. Direct printing synthesis of self-organized copper oxide hollow spheres on a substrate using copper(Ⅱ) complex ink: Gas sensing and photoelectrochemical properties. Langmuir 2014, 30, 700–709.

114

Wang, X.; Meng, Y. Y.; Li, G. D.; Zou, Y. C.; Cao, Y.; Zou, X. X. UV-assisted, template-free synthesis of ultrathin nanosheet-assembled hollow indium oxide microstructures for effective gaseous formaldehyde detection. Sens. Actuators B Chem. 2016, 224, 559–567.

115

Wang, X. S.; Zhang, J. B.; Wang, L. Y.; Li, S. C.; Liu, L.; Su, C.; Liu, L. L. High response gas sensors for formaldehyde based on Er-doped In2O3 nanotubes. J. Mater. Sci. Technol. 2015, 31, 1175–1180.

116

Wang, J. L.; Zhai, Q. G.; Li, S. N.; Jiang, Y. C.; Hu, M. C. Mesoporous In2O3 materials prepared by solid-state thermolysis of indium-organic frameworks and their high HCHO-sensing performance. Inorg. Chem. Commun. 2016, 63, 48–52.

117

Xue, Y. Y.; Wang, J. L.; Li, S. N.; Jiang, Y. C.; Hu, M. C.; Zhai, Q. G. Mesoporous Ag/In2O3 composite derived from indium organic framework as high performance formaldehyde sensor. J. Solid State Chem. 2017, 251, 170–175.

118

Mishra, R. K.; Murali, G.; Kim, T. H.; Kim, J. H.; Lim, Y. J.; Kim, B. S.; Sahay, P. P.; Lee, S. H. Nanocube In2O3@RGO heterostructure based gas sensor for acetone and formaldehyde detection. RSC Adv. 2017, 7, 38714–38724.

119

Dong, C. J.; Liu, X.; Han, B. Q.; Deng, S. J.; Xiao, X. C.; Wang, Y. D. Nonaqueous synthesis of Ag-functionalized In2O3/ZnO nanocomposites for highly sensitive formaldehyde sensor. Sens. Actuators B Chem. 2016, 224, 193–200.

120

Cao, Y. Y.; He, Y.; Zou, X. X.; Li, G. D. Tungsten oxide clusters decorated ultrathin In2O3 nanosheets for selective detecting formaldehyde. Sens. Actuators B Chem. 2017, 252, 232–238.

121

Zeng, W.; Miao, B.; Li, T. F.; Zhang, H.; Hussain, S.; Li, Y. Q.; Yu, W. J. Hydrothermal synthesis, characterization of h-WO3 nanowires and gas sensing of thin film sensor based on this powder. Thin Solid Films 2015, 584, 294–299.

122

Chen, H.; Hu, J. B.; Li, G. D.; Gao, Q.; Wei, C. D.; Zou, X. X. Porous Ga–In bimetallic oxide nanofibers with controllable structures for ultrasensitive and selective detection of formaldehyde. ACS Appl. Mater. Interfaces 2017, 9, 4692–4700.

123

Bai, S. L.; Tian, Y.; Zhao, Y. H.; Fu, H.; Tang, P. G.; Luo, R. X.; Li, D. Q.; Chen, A. F.; Liu, C. C. Construction of NiO@ZnSnO3 hierarchical microspheres decorated with NiO nanosheets for formaldehyde sensing. Sens. Actuators B Chem. 2018, 259, 908–916.

124

Meng, D.; Liu, D. Y.; Wang, G. S.; San, X. G.; Shen, Y. B.; Jin, Q.; Meng, F. L. CuO hollow microspheres self-assembled with nanobars: Synthesis and their sensing properties to formaldehyde. Vacuum 2017, 144, 272–280.

125

Chandiramouli, R.; Jeyaprakash, B. G. Operating temperature dependent ethanol and formaldehyde detection of spray deposited mixed CdO and MnO2 thin films. RSC Adv. 2015, 5, 43930–43940.

126

Chang, X. H.; Peng, M.; Yang, J. F.; Wang, T.; Liu, Y.; Zheng, J.; Li, X. G. A miniature room temperature formaldehyde sensor with high sensitivity and selectivity using CdSO4 modified ZnO nanoparticles. RSC Adv. 2015, 5, 75098–75104.

127

Hussain, S.; Liu, T. M.; Javed, M. S.; Aslam, N.; Zeng, W. Highly reactive 0D ZnS nanospheres and nanoparticles for formaldehyde gas- sensing properties. Sens. Actuators B Chem. 2017, 239, 1243–1250.

128

Park, H. J.; Kim, J.; Choi, N. J.; Song, H.; Lee, D. S. Nonstoichiometric Co-rich ZnCo2O4 hollow nanospheres for high performance formaldehyde detection at ppb levels. ACS Appl. Mater. Interfaces 2016, 8, 3233–3240.

129

Li, X. G.; Li, X. X.; Wang, J.; Lin, S. W. Highly sensitive and selective room-temperature formaldehyde sensors using hollow TiO2 microspheres. Sens. Actuators B Chem. 2015, 219, 158–163.

130

Lu, G. H.; Ocola, L. E.; Chen, J. H. Reduced graphene oxide for room- temperature gas sensors. Nanotechnology 2009, 20, 445502.

131

Varghese, S. S.; Lonkar, S.; Singh, K. K.; Swaminathan, S.; Abdala, A. Recent advances in graphene based gas sensors. Sens. Actuators B Chem. 2015, 218, 160–183.

132

Fan, Y. Y.; Ma, W. G.; Han, D. X.; Gan, S. Y.; Dong, X. D.; Niu, L. Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv. Mater. 2015, 27, 3767–3773.

133

Li, X.; Wang, J.; Xie, D.; Xu, J. L.; Xia, Y.; Li, W. W.; Xiang, L.; Li, Z. M.; Xu, S. W.; Komarneni, S. Flexible room-temperature formaldehyde sensors based on rGO film and rGo/MoS2 hybrid film. Nanotechnology 2017, 28, 325501.

134

Zhang, D. Z.; Liu, J. J.; Jiang, C. X.; Liu, A. M.; Xia, B. K. Quantitative detection of formaldehyde and ammonia gas via metal oxide-modified graphene-based sensor array combining with neural network model. Sens. Actuators B Chem. 2017, 240, 55–65.

135

Ye, Z. B.; Tai, H. L.; Xie, T.; Yuan, Z.; Liu, C. H.; Jiang, Y. D. Room temperature formaldehyde sensor with enhanced performance based on reduced graphene oxide/titanium dioxide. Sens. Actuators B Chem. 2016, 223, 149–156.

136

Vikrant, K.; Kumar, V.; Kim, K. H.; Kukkar, D. Metal-organic frameworks (MOFs): Potential and challenges for capture and abatement of ammonia. J. Mater. Chem. A 2017, 5, 22877–22896.

137

Kukkar, D.; Vellingiri, K.; Kim, K. H.; Deep, A. Recent progress in biological and chemical sensing by luminescent metal-organic frameworks. Sens. Actuators B Chem. 2018, 273, 1346–1370.

138

Achmann, S.; Hagen, G.; Kita, J.; Malkowsky, I. M.; Kiener, C.; Moos, R. Metal-organic frameworks for sensing applications in the gas phase. Sensors 2009, 9, 1574–1589.

139

Chen, E. X.; Yang, H.; Zhang, J. Zeolitic imidazolate framework as formaldehyde gas sensor. Inorg. Chem. 2014, 53, 5411–5413.

140

Tian, H. L.; Fan, H. Q.; Li, M. M.; Ma, L. T. Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor. ACS Sens. 2016, 1, 243–250.

141

Zhou, W.; Wu, Y. P.; Zhao, J.; Dong, W. W.; Qiao, X. Q.; Hou, D. F.; Bu, X. H.; Li, D. S. Efficient gas-sensing for formaldehyde with 3D hierarchical Co3O4 derived from Co5-based MOF microcrystals. Inorg. Chem. 2017, 56, 14111–14117.

142

Zhang, Y. M.; Zhang, J.; Zhao, J. H.; Zhu, Z. Q.; Liu, Q. J. Ag-LaFeO3 fibers, spheres, and cages for ultrasensitive detection of formaldehyde at low operating temperatures. Phys. Chem. Chem. Phys. 2017, 19, 6973–6980.

143

Zou, Z. J.; Qiu, Y.; Xie, C. S.; Xu, J. J.; Luo, Y. S.; Wang, C. L.; Yan, H. L. CdS/TiO2 nanocomposite film and its enhanced photoelectric responses to dry air and formaldehyde induced by visible light at room temperature. J. Alloys Compd. 2015, 645, 17–23.

144

Khan, A. A.; Rao, R. A. K.; Alam, N.; Shaheen, S. Formaldehyde sensing properties and electrical conductivity of newly synthesized polypyrrole- zirconium(IV)selenoiodate cation exchange nanocomposite. Sens. Actuators B Chem. 2015, 211, 419–427.

145

Chang, X. H.; Wu, X. Q.; Guo, Y. R.; Zhao, Y. C.; Zheng, J.; Li, X. G. SnSO4 modified ZnO nanostructure for highly sensitive and selective formaldehyde detection. Sens. Actuators B Chem. 2018, 255, 1153–1159.

146

Mitsubayashi, K.; Nishio, G.; Sawai, M.; Saito, T.; Kudo, H.; Saito, H.; Otsuka, K.; Noguer, T.; Marty, J. L. A bio-sniffer stick with FALDH (formaldehyde dehydrogenase) for convenient analysis of gaseous formaldehyde. Sens. Actuators B Chem. 2008, 130, 32–37.

147

Srinives, S.; Sarkar, T.; Mulchandani, A. Primary amine-functionalized polyaniline nanothin film sensor for detecting formaldehyde. Sens. Actuators B Chem. 2014, 194, 255–259.

148

Liu, L. P.; Li, X. G.; Dutta, P. K.; Wang, J. Room temperature impedance spectroscopy-based sensing of formaldehyde with porous TiO2 under UV illumination. Sens. Actuators B Chem. 2013, 185, 1–9.

149

Li, X.; Jiang, Y. D.; Tai, H. L.; Xie, G. Z.; Dan, W. C. The fabrication and optimization of OTFT formaldehyde sensors based on poly(3- hexythiophene)/ZnO composite films. Sci. China Technol. Sci. 2013, 56, 1877–1882.

150

Wang, J. J.; Zhan, D.; Wang, K.; Hang, W. W. The detection of formaldehyde using microelectromechanical acoustic resonator with multiwalled carbon nanotubes-polyethyleneimine composite coating. J. Micromech. Microeng. 2018, 28, 015003.

151

Hu, W. L.; Chen, S. Y.; Liu, L. T.; Ding, B.; Wang, H. P. Formaldehyde sensors based on nanofibrous polyethyleneimine/bacterial cellulose membranes coated quartz crystal microbalance. Sens. Actuators B Chem. 2011, 157, 554–559.

152

Iqbal, N.; Afzal, A.; Mujahid, A. Layer-by-layer assembly of low- temperature-imprinted poly(methacrylic acid)/gold nanoparticle hybrids for gaseous formaldehyde mass sensing. RSC Adv. 2014, 4, 43121–43130.

153

Wang, X. F.; Ding, B.; Sun, M.; Yu, J. Y.; Sun, G. Nanofibrous polyethyleneimine membranes as sensitive coatings for quartz crystal microbalance-based formaldehyde sensors. Sens. Actuators B Chem. 2010, 144, 11–17.

154

Zhang, C. Y.; Wang, X. F.; Lin, J. Y.; Ding, B.; Yu, J. Y.; Pan, N. Nanoporous polystyrene fibers functionalized by polyethyleneimine for enhanced formaldehyde sensing. Sens. Actuators B Chem. 2011, 152, 316–323.

155

Dong, C. J.; Li, Q.; Chen, G.; Xiao, X. C.; Wang, Y. D. Enhanced formaldehyde sensing performance of 3D hierarchical porous structure Pt-functionalized NiO via a facile solution combustion synthesis. Sens. Actuators B Chem. 2015, 220, 171–179.

156

Choi, N. J.; Park, H. J.; Jung, M. Y.; Lee, D. S.; Kim, J. Y.; Kim, J. M.; Song, H. Ultrasensitive formaldehyde gas sensors based on a hollow assembly and its 3-dimensional network formation of single-crystalline Co3O4 nanoparticles. In Proceedings of 2015 IEEE SENSORS, Busan, Republic of Korea, 2015, pp 1–3.

157

Fang, F.; Bai, L.; Song, D. S.; Yang, H. P.; Sun, X. M.; Sun, H. Y.; Zhu, J. Ag-modified In2O3/ZnO nanobundles with high formaldehyde gas-sensing performance. Sensors 2015, 15, 20086–20096.

158

Ding, C.; Ma, Y. L.; Lai, X. Y.; Yang, Q. F.; Xue, P.; Hu, F.; Geng, W. C. Ordered large-pore mesoporous CR2O3 with ultrathin framework for formaldehyde sensing. ACS Appl. Mater. Interfaces 2017, 9, 18170–18177.

159

Chuang, W. Y.; Yang, S. Y.; Wu, W. J.; Lin, C. T. A room-temperature operation formaldehyde sensing material printed using blends of reduced graphene oxide and poly(methyl methacrylate). Sensors 2015, 15, 28842–28853.

160

Li, Y. H.; Zhang, Q. Q.; Li, X. S.; Bai, H.; Li, W. T.; Zeng, T. T.; Xi, G. C. Ligand-free and size-controlled synthesis of oxygen vacancy-rich WO3–x quantum dots for efficient room-temperature formaldehyde gas sensing. RSC Adv. 2016, 6, 95747–95752.

161

Xiao, X. C.; Xing, X. X.; Han, B. Q.; Deng, D. Y.; Cai, X. Y.; Wang, Y. D. Enhanced formaldehyde sensing properties of SnO2 nanorods coupled with Zn2SnO4. RSC Adv. 2015, 5, 42628–42636.

162

Castro-Hurtado, I.; Gonzalez-Chávarri, J.; Morandi, S.; Samà, J.; Romano-Rodriguez, A.; Castaño, E.; Mandayo, G. G. Formaldehyde sensing mechanism of SnO2 nanowires grown on-chip by sputtering techniques. RSC Adv. 2016, 6, 18558–18566.

163

Liu, C. B.; Wang, X. S.; Xie, F.; Liu, L.; Ruan, S. P. Fabrication of Sm- doped porous In2O3 nanotubes and their excellent formaldehyde-sensing properties. J. Mater. Sci. Mater. Electron. 2016, 27, 9870–9876.

164

Zhang, G. C.; Han, X.; Bian, W. W.; Zhan, J. H.; Ma, X. C. Facile synthesis and high formaldehyde-sensing performance of NiO-SnO2 hybrid nanospheres. RSC Adv. 2016, 6, 3919–3926.

165

Upadhyay, S. B.; Mishra, R. K.; Sahay, P. P. Cr-doped WO3 nanosheets: Structural, optical and formaldehyde sensing properties. Ceram. Int. 2016, 42, 15301–15310.

166

Wei, Q.; Song, P.; Li, Z. Q.; Yang, Z. X.; Wang, Q. Hierarchical peony-like Sb-doped SnO2 nanostructures: Synthesis, characterization and HCHO sensing properties. Mater. Lett. 2017, 191, 173–177.

167

Chen, Z. W.; Hong, Y. Y.; Lin, Z. D.; Liu, L. M.; Zhang, X. W. Enhanced formaldehyde gas sensing properties of ZnO nanosheets modified with graphene. Electron. Mater. Lett. 2017, 13, 270–276.

168

Xiang, X.; Zhu, D. C.; Wang, D. J. Enhanced formaldehyde gas sensing properties of La-doped SnO2 nanoparticles prepared by ball-milling solid chemical reaction method. J. Mater. Sci. Mater. Electron. 2016, 27, 7425–7432.

169

Zhang, Y.; Xie, L. Z.; Yuan, C. X.; Zhang, C. L.; Liu, S.; Peng, Y. Q.; Li, H. R.; Zhang, M. A ppb-level formaldehyde gas sensor based on rose-like nickel oxide nanoparticles prepared using electrodeposition process. Nano 2016, 11, 1650009.

170

Zhang, Y.; Jiang, B.; Yuan, M. J.; Li, P. W.; Li, W.; Zheng, X. J. Formaldehyde-sensing properties of LaFeO3 particles synthesized by citrate sol–gel method. J. Sol-Gel Sci. Technol. 2016, 79, 167–175.

171

Cao, J.; Zhang, H. M.; Yan, X. Q. Facile fabrication and enhanced formaldehyde gas sensing properties of nanoparticles-assembled chain- like NiO architectures. Mater. Lett. 2016, 185, 40–42.

172

Xing, X. X.; Xiao, X. C.; Wang, L. H.; Wang, Y. D. Highly sensitive formaldehyde gas sensor based on hierarchically porous Ag-loaded ZnO heterojunction nanocomposites. Sens. Actuators B Chem. 2017, 247, 797–806.

173

Yang, M. Q.; He, J. H. Graphene oxide as quartz crystal microbalance sensing layers for detection of formaldehyde. Sens. Actuators B Chem. 2016, 228, 486–490.

174

Tai, H. L.; Bao, X. H.; He, Y. F.; Du, X. S.; Xie, G. Z.; Jiang, Y. D. Enhanced formaldehyde-sensing performances of mixed polyethyleneimine- multiwalled carbon nanotubes composite films on quartz crystal microbalance. IEEE Sens. J. 2015, 15, 6904–6911.

175

Güntner, A. T.; Koren, V.; Chikkadi, K.; Righettoni, M.; Pratsinis, S. E. E-nose sensing of low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of lung cancer? ACS Sens. 2016, 1, 528–535.

176

Wang, L. Y.; Yu, Y. P.; Xiang, Q.; Xu, J.; Cheng, Z. X.; Xu, J. Q. PODS- covered PDA film based formaldehyde sensor for avoiding humidity false response. Sens. Actuators B Chem. 2018, 255, 2704–2712.

177

Wang, X. Q.; Si, Y.; Mao, X.; Li, Y.; Yu, J. Y.; Wang, H. P.; Ding, B. Colorimetric sensor strips for formaldehyde assay utilizing fluoral-p decorated polyacrylonitrile nanofibrous membranes. Analyst 2013, 138, 5129–5136.

178

Korotcenkov, G. Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B 2007, 139, 1–23.

179

Kauffman, D. R.; Star, A. Carbon nanotube gas and vapor sensors. Angew. Chem., Int. Ed. 2008, 47, 6550–6570.

180

Singh, E.; Meyyappan, M.; Nalwa, H. S. Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces 2017, 9, 34544– 34586.

181

Bi, A. Y.; Yang, S. Q.; Liu, M.; Wang, X. B.; Liao, W. H.; Zeng, W. B. Fluorescent probes and materials for detecting formaldehyde: From laboratory to indoor for environmental and health monitoring. RSC Adv. 2017, 7, 36421–36432.

182

Xu, X. Y.; Yan, B. Eu(Ⅲ)-functionalized ZnO@MOF heterostructures: Integration of pre-concentration and efficient charge transfer for the fabrication of a ppb-level sensing platform for volatile aldehyde gases in vehicles. J. Mater. Chem. A 2017, 5, 2215–2223.

183

Szulczyński, B.; Gębicki, J. Currently commercially available chemical sensors employed for detection of volatile organic compounds in outdoor and indoor air. Environments 2017, 4, 21.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 July 2018
Revised: 12 September 2018
Accepted: 13 September 2018
Published: 29 September 2018
Issue date: February 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This study was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (No. 2016R1E1A1A01940995). This research also acknowledges the support made by the R & D Center for Green Patrol Technologies through the R & D for Global Top Environmental Technologies funded by the Ministry of Environment (MOE) as well as support made by the Korea Ministry of Environment (MOE) (No. 2015001950001) as part of "The Chemical Accident Prevention Technology Development Project". D. K. acknowledges the support of Science and Engineering Research Board, Government of India, for providing financial assistance under the young scientist scheme (No. YSS/2015/000212).

Return