Journal Home > Volume 12 , Issue 1

Dendrite formation on lithium (Li) metal anode is a key issue which hinders the development of rechargeable Li battery seriously. A novel method for suppressing Li dendrites via using Li phosphorous oxynitride (LiPON) modified Li anode and Li1.5Al0.5Ge1.5(PO4)3-poly(ethylene oxide)(Li bistrifluoromethane-sulfonimide) (LAGP-PEO(LiTFSI)) composite solid electrolyte in all-solid-state Li battery is proposed, and the effect of the thickness of LiPON on Li anode performance is also studied. LiPON film with a thickness of 500 nm exhibits satisfactory interface property between Li metal anode and the LAGP-PEO(LiTFSI) solid electrolyte. The LiPON film provides a uniform Li+ flux across the interface and effectively inhibits the formation of Li dendrites in all-solid-state Li batteries. The assembled all-solid-state Li cell Li(LiPON)/LAGP- PEO(LiTFSI)/LiFePO4 delivers an initial discharge capacity of 152.4 mAh·g-1 and exhibits good cycling stability and rate performance at 50 ℃.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes

Show Author's information Chunhua Wang1,2,3Guoliang Bai2( )Yifu Yang1( )Xingjiang Liu3( )Huixia Shao1
Hubei Key Lab. of Electrochemical Power Sources,College of Chemistry and Molecular Sciences, Wuhan University,Wuhan,430072,China;
Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials,Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University,Anqing,246011,China;
National Key Lab. of Power Sources,Tianjin Institute of Power Sources,Tianjin,300381,China;

Abstract

Dendrite formation on lithium (Li) metal anode is a key issue which hinders the development of rechargeable Li battery seriously. A novel method for suppressing Li dendrites via using Li phosphorous oxynitride (LiPON) modified Li anode and Li1.5Al0.5Ge1.5(PO4)3-poly(ethylene oxide)(Li bistrifluoromethane-sulfonimide) (LAGP-PEO(LiTFSI)) composite solid electrolyte in all-solid-state Li battery is proposed, and the effect of the thickness of LiPON on Li anode performance is also studied. LiPON film with a thickness of 500 nm exhibits satisfactory interface property between Li metal anode and the LAGP-PEO(LiTFSI) solid electrolyte. The LiPON film provides a uniform Li+ flux across the interface and effectively inhibits the formation of Li dendrites in all-solid-state Li batteries. The assembled all-solid-state Li cell Li(LiPON)/LAGP- PEO(LiTFSI)/LiFePO4 delivers an initial discharge capacity of 152.4 mAh·g-1 and exhibits good cycling stability and rate performance at 50 ℃.

Keywords: lithium metal anode, lithium dendrites, Li phosphorous oxynitride (LiPON), composite solid electrolyte, all-solid-state lithium battery

References(50)

1

Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. , in press, DOI: 10.1007/s40843-018-9324-0.

2

Kim, H.; Jeong, G.; Kim, Y. -U.; Kim, J. -H.; Park, C. -M.; Sohn, H. -J. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 2013, 42, 9011-9034.

3

Zhamu, A.; Chen, G. R.; Liu, C. G.; Neff, D.; Fang, Q.; Yu, Z. N.; Xiong, W.; Wang, Y. B.; Wang, X. Q.; Jang, B. Z. Reviving rechargeable lithium metal batteries: Enabling next-generation high-energy and high-power cells. Energy Environ. Sci. 2012, 5, 5701-5707.

4

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. -G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513-537.

5

Kozen, A. C.; Lin, C. F.; Pearse, A. J.; Schroeder, M. A.; Han, X. G.; Hu, L. B.; Lee, S. B.; Rubloff, G. W.; Noked, M. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 2015, 9, 5884-5892.

6

Tsai, C. L.; Roddatis, V.; Chandran, C. V.; Ma, Q. L.; Uhlenbruck, S.; Bram, M.; Heitjans, P.; Guillon, O. Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl. Mater. Interfaces 2016, 8, 10617-10626.

7

Sun, F.; Zielke, L.; Marköetter, H.; Hilger, A.; Zhou, D.; Moroni, R.; Zengerle, R.; Thiele, S.; Banhart, J.; Manke, I. Morphological evolution of electrochemically plated/stripped lithium microstructures investigated by synchrotron X-ray phase contrast tomography. ACS Nano 2016, 10, 7990-7997.

8

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

9

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.

10

Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271-4302.

11

Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854-7863.

12

Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28-E32.

13

Peled, E. The electrochemical-behavior of alkali and alkaline-earth metals in non-aqueous battery systems-the solid electrolyte interphase model. J. Electrochem. Soc. 1979, 126, 2047-2051.

14

Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725-763.

DOI
15

Schmitz, R.; Müller, R. A.; Schmitz, R. W.; Schreiner, C.; Kunze, M.; Lex-Balducci, A.; Passerini, S.; Winter, M. SEI investigations on copper electrodes after lithium plating with Raman spectroscopy and mass spectrometry. J. Power Sources 2013, 233, 110-114.

16

Besenhard, J. O.; Wagner, M. W.; Winter, M.; Jannakoudakis, A. D.; Jannakoudakis, P. D.; Theodoridou, E. Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon lithium electrodes. J. Power Sources 1993, 44, 413-420.

17

Kitaura, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. Fabrication of electrode-electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes. J. Mater. Chem. 2011, 21, 118-124.

18

Quartarone, E.; Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev. 2011, 40, 2525-2540.

19

Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M. et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium-oxygen batteries. Adv. Mater. 2015, 27, 5241-5247.

20

Liu, T.; Chang, Z. W.; Yin, Y. B.; Chen, K.; Zhang, Y.; Zhang, X. B. The PVDF-HFP gel polymer electrolyte for Li-O2 battery. Solid State Ionics 2018, 318, 88-94.

21

Xu, J. J.; Liu, Q. C.; Yu, Y.; Wang, J.; Yan, J. M.; Zhang, X. B. In situ construction of stable tissue-directed/reinforced bifunctional separator/protection film on lithium anode for lithium-oxygen batteries. Adv. Mater. 2017, 29, 1606552.

22

Wang, J.; Yin, Y. B.; Liu, T.; Yang, X. Y.; Chang, Z. W.; Zhang, X. B. Hybrid electrolyte with robust garnet-ceramic electrolyte for lithium anode protection in lithium-oxygen batteries. Nano Res. 2018, 11, 3434-3441.

23

Sudo, R.; Nakata, Y.; Ishiguro, K.; Matsui, M.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Imanishi, N. Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal. Solid State Ionics 2014, 262, 151-154.

24

Ren, Y. Y.; Shen, Y.; Lin, Y. H.; Nan, C. W. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem. Commun. 2015, 57, 27-30.

25

Okumura, T.; Nakatsutsumi, T.; Ina, T.; Orikasa, Y.; Arai, H.; Fukutsuka, T.; Iriyama, Y.; Uruga, T.; Tanida, H.; Uchimoto, Y. et al. Depth-resolved X-ray absorption spectroscopic study on nanoscale observation of the electrode-solid electrolyte interface for all solid state lithium ion batteries. J. Mater. Chem. 2011, 21, 10051-10060.

26

Jung, Y. C.; Lee, S. M.; Choi, J. H.; Jang, S. S.; Kim, D. W. All solid-state lithium batteries assembled with hybrid solid electrolytes. J. Electrochem. Soc. 2015, 162, A704-A710.

27

Du, F. M.; Zhao, N.; Li, Y. Q.; Chen, C.; Liu, Z. W.; Guo, X. X. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes. J. Power Sources 2015, 300, 24-28.

28

Li, C. L.; Wang, J.; Chang, Z. W.; Yin, Y. B.; Yang, X. Y.; Zhang, X. B. Preparation and characterization of PAN-LATP composite solid-state electrolyte. Sci. Sinica Chim. 2018, 48, 964-971.

29

Kotobuki, M.; Hoshina, K.; Kanamura, K. Electrochemical properties of thin TiO2 electrode on Li1+xAlxGe2-x(PO4)3 solid electrolyte. Solid State Ionics 2011, 198, 22-25.

30

Bates, J. B.; Dudney, N. J.; Gruzalski, G. R.; Zuhr, R. A.; Choudhury, A.; Luck, C. F.; Robertson, J. D. Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics 1992, 53-56, 647-654.

31

Neudecker, B. J.; Dudney, N. J.; Bates, J. B. "Lithium-free" thin-film battery with in situ plated Li anode. J. Electrochem. Soc. 2000, 147, 517-523.

32

Yu, X. H.; Bates, J. B.; Jellison, G. E.; Hart, F. X. A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride. J. Electrochem. Soc. 1997, 144, 524-532.

33

Dudney, N. J.; Neudecker, B. J. Solid state thin-film lithium battery systems. Curr. Opin. Solid State Mater. Sci. 1999, 4, 479-482.

34

Iriyama, Y.; Nishimoto, K.; Yada, C.; Abe, T.; Ogumi, Z.; Kikuchi, K. Charge-transfer reaction at the lithium phosphorus oxynitride glass electrolyte/lithium manganese oxide thin-film interface and its stability on cycling. J. Electrochem. Soc. 2006, 153, A821-A825.

35

Song, S. W.; Choi, H.; Park, H. Y.; Park, G. B.; Lee, K. C.; Lee, H. J. High rate-induced structural changes in thin-film lithium batteries on flexible substrate. J. Power Sources 2010, 195, 8275-8279.

36

Jang, Y. I.; Dudney, N. J.; Blom, D. A.; Allard, L. F. High-voltage cycling behavior of thin-film LiCoO2 cathodes. J. Electrochem. Soc. 2002, 149, A1442-A1447.

37

Dudney, N. J.; Bates, J. B.; Zuhr, R. A.; Young, S.; Robertson, J. D.; Jun, H. P.; Hackney, S. A. Nanocrystalline LixMn2-yO4 cathodes for solid-state thin-film rechargeable lithium batteries. J. Electrochem. Soc. 1999, 146, 2455-2464.

38

Fleutot, B.; Pecquenard, B.; Le Cras, F.; Delis, B.; Martinez, H.; Dupont, L.; Guy-Bouyssou, D. Characterization of all-solid-state Li/LiPONB/TiOS microbatteries produced at the pilot scale. J. Power Sources 2011, 196, 10289-10296.

39

Monroe, C.; Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 2005, 152, A396-A404.

40

Herbert, E. G.; Tenhaeff, W. E.; Dudney, N. J.; Pharr, G. M. Mechanical characterization of LiPON films using nanoindentation. Thin Solid Films 2011, 520, 413-418.

41

Wang, B.; Bates, J. B.; Hart, F. X.; Sales, B. C.; Zuhr, R. A.; Robertson, J. D. Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes. J. Electrochem. Soc. 1996, 143, 3203-3213.

42

Lee, S. J.; Balk, H. K.; Lee, S. M. An all-solid-state thin film battery using LISIPON electrolyte and Si-V negative electrode films. Electrochem. Commun. 2003, 5, 32-35.

43

Liu, W. Y.; Fu, Z. W.; Qin, Q. Z. A "lithium-free" thin-film battery with an unexpected cathode layer. J. Electrochem. Soc. 2008, 155, A8-A13.

44

Fleutot, B.; Pecquenard, B.; Martinez, H.; Letellier, M.; Levasseur, A. Investigation of the local structure of LiPON thin films to better understand the role of nitrogen on their performance. Solid State Ionics 2011, 186, 29-36.

45

Liu, W. Y.; Fu, Z. W.; Li, C. L.; Qin, Q. Z. Lithium phosphorus oxynitride thin film fabricated by a nitrogen plasma-assisted deposition of E-beam reaction evaporation. Electrochem. Solid-State Lett. 2004, 7, J36-J40.

46

Wang, B.; Chakoumakos, B. C.; Sales, B. C.; Kwak, B. S.; Bates, J. B. Synthesis, crystal structure, and ionic conductivity of a polycrystalline lithium phosphorus oxynitride with the γ-Li3PO4 structure. J. Solid State Chem. 1995, 115, 313-323.

47

Wang, C. H.; Yang, Y. F.; Liu, X. J.; Zhong, H.; Xu, H.; Xu, Z. B.; Shao, H. X.; Ding, F. Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 2017, 9, 13694-13702.

48

Zhao, S. L.; Fu, Z. W.; Qin, Q. Z. A solid-state electrolyte lithium phosphorus oxynitride film prepared by pulsed laser deposition. Thin Solid Films 2002, 415, 108-113.

49

Iriyama, Y.; Kako, T.; Yada, C.; Abe, T.; Ogumi, Z. Reduction of charge transfer resistance at the lithium phosphorus oxynitride/lithium cobalt oxide interface by thermal treatment. J. Power Sources 2005, 146, 745-748.

50

Le Van-Jodin, L.; Ducroquet, F.; Sabary, F.; Chevalier, I. Dielectric properties, conductivity and Li+ ion motion in LiPON thin films. Solid State Ionics 2013, 253, 151-156.

File
12274_2018_2205_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 June 2018
Revised: 23 August 2018
Accepted: 13 September 2018
Published: 22 September 2018
Issue date: January 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

The authors greatly appreciated the financial support of the National Natural Science Foundation of China (No. 21233004) and Natural Science Foundation of Anhui Education Department (No. KJ2018A0372).

Return