Journal Home > Volume 12 , Issue 1

Direct methanol fuel cells (DMFCs) have received tremendous research interests because of the facile storage of liquid methanol vs. hydrogen. However, the DMFC today is severely plagued by the poor kinetics and rather high overpotential in methanol oxidation reaction (MOR). Here we report the investigation of the ultrathin Rh wavy nanowires as a highly effective MOR electrocatalyst. We show that ultrathin wavy Rh nanowires can be robustly synthesized with 2-3 nm diameters. Electrochemical studies show a current peak at the potential of 0.61 V vs. reversible hydrogen electrode (RHE), considerably lower than that of Pt based catalysts (~ 0.8-0.9 V vs. RHE). Importantly, with ultrathin diameters and favorable charge transport, the Rh nanowires catalysts exhibit an ultrahigh electrochemically active surface area determined from CO-stripping (ECSACO) of 144.2 m2/g, far exceeding that of the commercial Rh black samples (20 m2/g). Together, the Rh nanowire catalysts deliver a mass activity of 722 mA/mg at 0.61 V, considerably higher than many previously reported electrocatalysts at the same potential. The chronoamperometry studies also demonstrate good stability and CO-tolerance compared with the Rh black control sample, making ultrathin Rh wavy nanowires an attractive electrocatalyst for MOR.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultrathin wavy Rh nanowires as highly effective electrocatalysts for methanol oxidation reaction with ultrahigh ECSA

Show Author's information Xiaoyang Fu1Zipeng Zhao2Chengzhang Wan1Yiliu Wang1Zheng Fan1Frank Song1Bocheng Cao1Mufan Li1Wang Xue1Yu Huang2,3( )Xiangfeng Duan1,3( )
Department of Chemistry and Biochemistry,University of California, Los Angeles,Los Angeles, California,90095,USA;
Department of Materials Science and Engineering,University of California, Los Angeles,Los Angeles, California,90095,USA;
California Nanosystems Institute,University of California, Los Angeles,Los Angeles, California,90095,USA;

Abstract

Direct methanol fuel cells (DMFCs) have received tremendous research interests because of the facile storage of liquid methanol vs. hydrogen. However, the DMFC today is severely plagued by the poor kinetics and rather high overpotential in methanol oxidation reaction (MOR). Here we report the investigation of the ultrathin Rh wavy nanowires as a highly effective MOR electrocatalyst. We show that ultrathin wavy Rh nanowires can be robustly synthesized with 2-3 nm diameters. Electrochemical studies show a current peak at the potential of 0.61 V vs. reversible hydrogen electrode (RHE), considerably lower than that of Pt based catalysts (~ 0.8-0.9 V vs. RHE). Importantly, with ultrathin diameters and favorable charge transport, the Rh nanowires catalysts exhibit an ultrahigh electrochemically active surface area determined from CO-stripping (ECSACO) of 144.2 m2/g, far exceeding that of the commercial Rh black samples (20 m2/g). Together, the Rh nanowire catalysts deliver a mass activity of 722 mA/mg at 0.61 V, considerably higher than many previously reported electrocatalysts at the same potential. The chronoamperometry studies also demonstrate good stability and CO-tolerance compared with the Rh black control sample, making ultrathin Rh wavy nanowires an attractive electrocatalyst for MOR.

Keywords: electrocatalysis, nanowires, rhodium, methanol oxidation reaction (MOR)

References(27)

1

Joghee, P.; Malik, J. N.; Pylypenko, S.; O'Hayre, R. A review on direct methanol fuel cells-In the perspective of energy and sustainability. MRS Energy Sustain. 2015, 2, E3.

2

Yu, E. H.; Krewer, U.; Scott, K. Principles and materials aspects of direct alkaline alcohol fuel cells. Energies 2010, 3, 1499-1528.

3

Lei, M.; Wang, J.; Li, J. R.; Wang, Y. G.; Tang, H. L.; Wang, W. J. Emerging methanol-tolerant AlN nanowire oxygen reduction electrocatalyst for alkaline direct methanol fuel cell. Sci. Rep. 2014, 4, 6013.

4

Wang, D. -W.; Su, D. S. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 576-591.

5

Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F. P.; Zeng, M. et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun. 2015, 6, 10035.

6

Zhang, Z. C.; Luo, Z. M.; Chen, B.; Wei, C.; Zhao, J.; Chen, J. Z.; Zhang, X.; Lai, Z. C.; Fan, Z. X.; Tan, C. L. et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 2016, 28, 8712-8717.

7

Ma, S. Y.; Li, H. H.; Hu, B. C.; Cheng, X.; Fu, Q. Q.; Yu, S. H. Synthesis of low Pt-based quaternary PtPdRuTe nanotubes with optimized incorporation of Pd for enhanced electrocatalytic activity. J. Am. Chem. Soc. 2017, 139, 5890-5895.

8

Li, H. H.; Fu, Q. Q.; Xu, L.; Ma, S. Y.; Zheng, Y. R.; Liu, X. J.; Yu, S. H. Highly crystalline PtCu nanotubes with three dimensional molecular accessible and restructured surface for efficient catalysis. Energy Environ. Sci. 2017, 10, 1751−1756.

9

Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414-1419.

10

Guerrero, M.; Than Chau, N. T.; Noël, S.; Denicourt-Nowicki, A.; Hapiot, F.; Roucoux, A.; Monflier, E.; Philippot, K. About the use of rhodium nanoparticles in hydrogenation and hydroformylation reactions. Curr. Org. Chem. 2013, 17, 364-399.

11

Cobo, M.; Becerra, J.; Castelblanco, M.; Cifuentes, B.; Conesa, J. A. Catalytic hydrodechlorination of trichloroethylene in a novel NaOH/2- propanol/methanol/water system on ceria-supported Pd and Rh catalysts. J. Environ. Manage. 2015, 158, 1-10.

12

Wang, L. B.; Li, H. L.; Zhang, W. B.; Zhao, X.; Qiu, J. X.; Li, A. W.; Zheng, X. S.; Hu, Z. P.; Si, R.; Zeng, J. Supported rhodium catalysts for ammonia-borane hydrolysis: Dependence of the catalytic activity on the highest occupied state of the single rhodium atoms. Angew. Chem., Int. Ed. 2017, 56, 4712-4718.

13

Parry, I. S.; Kartouzian, A.; Hamilton, S. M.; Balaj, O. P.; Beyer, M. K.; Mackenzie, S. R. Collisional activation of N2O decomposition and CO oxidation reactions on isolated rhodium clusters. J. Phys. Chem. A 2013, 117, 8855-8863.

14

Jiang, B.; Li, C. L.; Dag, Ö.; Abe, H.; Takei, T.; Imai, T.; Hossain, M. S. A.; Islam, M. T.; Wood, K.; Henzie, J. et al. Mesoporous metallic rhodium nanoparticles. Nat. Commun. 2017, 8, 15581.

15

Li, L.; Tian, C. X.; Yang, J. S.; Zhang, X. H.; Chen, J. H. One-pot synthesis of PtRh/β-CD-CNTs for methanol oxidation. Int. J. Hydrogen Energy 2015, 40, 14866-14874.

16

Jurzinsky, T.; Bär, R.; Cremers, C.; Tübke, J.; Elsner, P. Highly active carbon supported palladium-rhodium PdxRh/C catalysts for methanol electrooxidation in alkaline media and their performance in anion exchange direct methanol fuel cells (AEM-DMFCs). Electrochim. Acta 2015, 176, 1191-1201.

17

Chotkowski, M.; Uklejewska, M.; Siwek, H.; Dłubak, J.; Czerwiński, A. Characterization of Pt-Rh-Ru catalysts for methanol oxidation. Funct. Mater. Lett. 2011, 4, 187-191.

18

Jiang, K. Z.; Bu, L. Z.; Wang, P. T.; Guo, S. J.; Huang, X. Q. Trimetallic PtSnRh wavy nanowires as efficient nanoelectrocatalysts for alcohol electrooxidation. ACS Appl. Mater. Interfaces 2015, 7, 15061-15067.

19

Kang, Y. Q.; Li, F. M.; Li, S. N.; Ji, P. J.; Zeng, J. H.; Jiang, J. X.; Chen, Y. Unexpected catalytic activity of rhodium nanodendrites with nanosheet subunits for methanol electrooxidation in an alkaline medium. Nano Res. 2016, 9, 3893-3902.

20

Kang, Y. Q.; Xue, Q.; Jin, P. J.; Jiang, J. X.; Zeng, J. H.; Chen, Y. Rhodium nanosheets-reduced graphene oxide hybrids: A highly active platinum- alternative electrocatalyst for the methanol oxidation reaction in alkaline media. ACS Sustain. Chem. Eng. 2017, 5, 10156-10162.

21

Huang, X. Q.; Zhao, Z. P.; Chen, Y.; Chiu, C. Y.; Ruan, L. Y.; Liu, Y.; Li, M. F.; Duan, X. F.; Huang, Y. High density catalytic hot spots in ultrafine wavy nanowires. Nano Lett. 2014, 14, 3887-3894.

22

Durst, J.; Simon, C.; Hasché, F.; Gasteiger, H. A. Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media. J. Electrochem. Soc. 2015, 162, F190-F203.

23

Hofstead-Duffy, A. M.; Chen, D. J.; Sun, S. G.; Tong, Y. J. Origin of the current peak of negative scan in the cyclic voltammetry of methanol electro-oxidation on Pt-based electrocatalysts: A revisit to the current ratio criterion. J. Mater. Chem. 2012, 22, 5205-5208.

24

Chung, D. Y.; Lee, K. J.; Sung, Y. E. Methanol electro-oxidation on the Pt surface: Revisiting the cyclic voltammetry interpretation. J. Phys. Chem. C 2016, 120, 9028-9035.

25

Mikkelsen, K.; Cassidy, B.; Hofstetter, N.; Bergquist, L.; Taylor, A.; Rider, D. A. Block copolymer templated synthesis of core-shell PtAu bimetallic nanocatalysts for the methanol oxidation reaction. Chem. Mater. 2014, 26, 6928-6940.

26

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. A 2004, 108, 17886-17892.

27

Ren, F. F.; Wang, C. Q.; Zhai, C. Y.; Jiang, F. X.; Yue, R. R.; Du, Y. K.; Yang, P.; Xu, J. K. One-pot synthesis of a RGO-supported ultrafine ternary PtAuRu catalyst with high electrocatalytic activity towards methanol oxidation in alkaline medium. J. Mater. Chem. A 2013, 1, 7255-7261.

File
12274_2018_2204_MOESM1_ESM.pdf (170.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 May 2018
Revised: 05 September 2018
Accepted: 13 September 2018
Published: 01 October 2018
Issue date: January 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

We acknowledge support from the Office of Naval Research Office under the grant number N00014-18-1-2491.

Return