Journal Home > Volume 12 , Issue 1

One of important challenges in condensed-matter physics is to realize new quantum states of matter by manipulating the dimensionality of materials, as represented by the discovery of high-temperature superconductivity in atomic-layer pnictides and room-temperature quantum Hall effect in graphene. Transition-metal dichalcogenides (TMDs) provide a fertile platform for exploring novel quantum phenomena accompanied by the dimensionality change, since they exhibit a variety of electronic/magnetic states owing to quantum confinement. Here we report an anomalous metal-insulator transition induced by three-dimensional (3D)–two-dimensional (2D) crossover in monolayer 1T-VSe2 grown on bilayer graphene. We observed a complete insulating state with a finite energy gap on the entire Fermi surface in monolayer 1T-VSe2 at low temperatures, in sharp contrast to metallic nature of bulk. More surprisingly, monolayer 1T-VSe2 exhibits a pseudogap with Fermi arc at temperatures above the charge-density-wave temperature, showing a close resemblance to high-temperature cuprates. This similarity suggests a common underlying physics between two apparently different systems, pointing to the importance of charge/spin fluctuations to create the novel electronic states, such as pseudogap and Fermi arc, in these materials.


menu
Abstract
Full text
Outline
About this article

Pseudogap, Fermi arc, and Peierls-insulating phase induced by 3D–2D crossover in monolayer VSe2

Show Author's information Yuki Umemoto1Katsuaki Sugawara1,2,3( )Yuki Nakata1Takashi Takahashi1,2,3Takafumi Sato1,2
Department of Physics,Tohoku University,Sendai,980-8578,Japan;
WPI-Advanced Institute for Materials Research,Tohoku University,Sendai,980-8577,Japan;
Center for Spintronics Research Network,Tohoku University,Sendai,980-8577,Japan;

Abstract

One of important challenges in condensed-matter physics is to realize new quantum states of matter by manipulating the dimensionality of materials, as represented by the discovery of high-temperature superconductivity in atomic-layer pnictides and room-temperature quantum Hall effect in graphene. Transition-metal dichalcogenides (TMDs) provide a fertile platform for exploring novel quantum phenomena accompanied by the dimensionality change, since they exhibit a variety of electronic/magnetic states owing to quantum confinement. Here we report an anomalous metal-insulator transition induced by three-dimensional (3D)–two-dimensional (2D) crossover in monolayer 1T-VSe2 grown on bilayer graphene. We observed a complete insulating state with a finite energy gap on the entire Fermi surface in monolayer 1T-VSe2 at low temperatures, in sharp contrast to metallic nature of bulk. More surprisingly, monolayer 1T-VSe2 exhibits a pseudogap with Fermi arc at temperatures above the charge-density-wave temperature, showing a close resemblance to high-temperature cuprates. This similarity suggests a common underlying physics between two apparently different systems, pointing to the importance of charge/spin fluctuations to create the novel electronic states, such as pseudogap and Fermi arc, in these materials.

Keywords: transition-metal dichalchogenides, 1T-VSe2, charge density wave, electronic states, pseudogap, Fermi arc

References(34)

1

Xi, X. X.; Wang, Z. F.; Zhao, W. W.; Park, J. H.; Law, K. T.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 2016, 12, 139-143.

2

Saito, Y.; Nakamura, Y.; Bahramy, M. S.; Kohama, Y.; Ye, J. T.; Kasahara, Y.; Nakagawa, Y.; Onga, M.; Tokunaga, M.; Nojima, T. et al. Superconductivity protected by spin-valley locking in ion-gated MoS2. Nat. Phys. 2016, 12, 144-149.

3

Onga, M.; Zhang, Y. J.; Ideue, T.; Iwasa, Y. Exciton Hall effect in monolayer MoS2. Nat. Mater. 2017, 16, 1193-1197.

4

Sugawara, K.; Nakata, Y.; Shimizu, R.; Han, P.; Hitosugi, T.; Sato, T.; Takahashi, T. Unconventional charge-density-wave transition in monolayer 1T-TiSe2. ACS Nano 2016, 10, 1341-1345.

5

Kolekar, S.; Bonilla, M.; Ma, Y. J.; Diaz, C. H.; Batzill, M. Layer- and substrate-dependent charge density wave criticality in 1T-TiSe2. 2D Mater. 2017, 5, 015006.

6

Kalantar-zadeh, K.; Ou, J. Z. Biosensors based on two-dimensional MoS2. ACS Sens. 2016, 1, 5-16.

7

Chang, K.; Chen, W. X. L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 2011, 5, 4720-4728.

8

Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J. S.; Matthews, T. S.; You, L.; Li, J. B.; Grossman. J. C.; Wu, J. Q. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 2013, 13, 2831-2836.

9

Bayard, M.; Sienko, M. J. Anomalous electrical and magnetic properties of vanadium diselenide. J. Solid State Chem. 1976, 19, 325-329.

10

Tsutsumi, K. X-ray-diffraction study of the periodic lattice distortion associated with a charge-density wave in 1T-VSe2. Phys. Rev. B 1982, 26, 5756-5759.

11

Terashima, K.; Sato, T.; Komatsu, H.; Takahashi, T.; Maeda, N.; Hayashi, K. Charge-density wave transition of 1T-VSe2 studied by angle-resolved photoemission spectroscopy. Phys. Rev. B 2003, 68, 155108.

12

Sato, T.; Terashima, K.; Souma, S.; Matsui, H.; Takahashi, T.; Yang, H. B.; Wang, S. C.; Ding, H.; Maeda, N.; Hayashi, K. Three-dimensional Fermi- surface nesting in 1T-Vse2 studied by angle-resolved photoemission spectroscopy. J. Phys. Soc. Jpn. 2004, 73, 3331-3334.

13

Strocov, V. N.; Shi, M.; Kobayashi, M.; Monney, C.; Wang, X. Q.; Krempasky, J.; Schmitt, T.; Patthey, L.; Berger, H.; Blaha, P. Three-dimensional electron realm in VSe2 by soft-X-ray photoelectron spectroscopy: Origin of charge-density waves. Phys. Rev. Lett. 2012, 109, 086401.

14

Yang, J. Y.; Wang, W. K.; Liu, Y.; Du, H. F.; Ning, W.; Zheng, G. L.; Jin, C. M.; Han, Y. Y.; Wang, N.; Yang, Z. R. et al. Thickness dependence of the charge-density-wave transition temperature in VSe2. Appl. Phys. Lett. 2014, 105, 063109.

15

Pásztor, Á.; Scarfato, A.; Barreteau, C.; Giannini, E.; Renner, C. Dimensional crossover of the charge density wave transition in thin exfoliated VSe2. 2D Mater. 2017, 4, 041005.

16

Feng, J. G.; Biswas, D.; Rajan, A.; Watson, M. D.; Mazzola, F.; Clark, O. J.; Underwood, K.; Markovic, I.; McLaren, M.; Hunter, A. et al. Electronic structure and enhanced charge-density wave order of monolayer VSe2. Nano Lett. 2018, 18, 4493-4499.

17

Duvjir, G.; Choi, B. K.; Jang, I.; Ulstrup, S.; Kang, S.; Ly, T. T.; Kim, S.; Choi, Y. H.; Jozwiak, C.; Bostwick, A. et al. Emergence of a metal-insulator transition and high-temperature charge-density waves in VSe2 at the monolayer limit. Nano Lett., in press, DOI: 10.1021/acs.nanolett.8b01764.

18

Liu, Z. L.; Wu, X.; Shao, Y.; Qi, J.; Cao, Y.; Huang, L.; Liu, C.; Wang, J. O.; Zheng, Q.; Zhu, Z. L. et al. Epitaxially grown monolayer VSe2: An air-stable magnetic two-dimensional material with low work function at edges. Sci. Bull. 2018, 63, 419-425.

19

Koma, A. Van der Waals epitaxy—A new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 1992, 216, 72-76.

20

Sugawara, K.; Sato, T.; Tanaka, Y.; Souma, S.; Takahashi, T. Spin- and valley-coupled electronic states in monolayer WSe2 on bilayer graphene. Appl. Phys. Lett. 2015, 107, 071601.

21

Nakata, Y.; Sugawara, K.; Shimizu, R.; Okada, Y.; Han, P.; Hitosugi, T.; Ueno, K.; Sato, T.; Takahashi, T. Monolayer 1T-NbSe2 as a Mott insulator. NPG Asia Mater. 2016, 8, e321.

22

Tanaka, K.; Lee, W. S.; Lu, D. H.; Fujimori, A.; Fujii, T.; Risdiana; Terasaki, I.; Scalapino, D. J.; Devereaux, T. P.; Hussain, Z. et al. Distinct Fermi-momentum-dependent energy gaps in deeply underdoped Bi2212. Science 2006, 314, 1910-1913.

23

Kanigel, A.; Norman, M. R.; Randeria, M.; Chatterjee, U.; Souma, S.; Kaminski, A.; Fretwell, H. M.; Rosenkranz, S.; Shi, M.; Sato, T. et al. Evolution of the pseudogap from Fermi arcs to the nodal liquid. Nat. Phys. 2006, 2, 447-451.

24

Esters, M.; Hennig, R. G.; Johnson, D. C. Dynamic instabilities in strongly correlated VSe2 monolayers and bilayers. Phys. Rev. B 2017, 96, 235147.

25

Falmbigl, M.; Fiedler, A.; Atkins, R. E.; Fischer, S. F.; Johnson, D. C. Suppressing a charge density wave by changing dimensionality in the ferecrystalline compounds ([SnSe]1.15)1(VSe2)n with n = 1, 2, 3, 4. Nano Lett. 2015, 15, 943-948.

26

Hite, O. K.; Falmbigl, M.; Alemayehu, M. B.; Esters, M.; Wood, S. R.; Johnson, D. C. Charge density wave transition in (PbSe)1+δ(VSe2)n compounds with n = 1, 2, and 3. Chem. Mater. 2017, 29, 5646-5653.

27

Bonilla, M.; Kolekar, S.; Ma, Y. J.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M. H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotech. 2018, 13, 289-293.

28

Fu, C.; Doniach, S. Model for a strongly correlated insulator: FeSi. Phys. Rev. B 1995, 51, 17439-17445.

29

Li, F. Y.; Tu, K. X.; Chen, Z. F. Versatile electronic properties of VSe2 bulk, few-layers, monolayer, nanoribbons, and nanotubes: A computational exploration. J. Phys. Chem. C 2014, 118, 21264-21274.

30

McKenzie, R. H. Microscopic theory of the pseudogap and peierls transition in quasi-one-dimensional materials. Phys. Rev. B 1995, 52, 16428-16442.

31

Shen, K. M.; Ronning, F.; Lu, D. H.; Baumberger, F.; Ingle, N. J. C.; Lee, W. S.; Meevasana, W.; Kohsaka, Y.; Azuma, M.; Takano, M. et al. Nodal quasiparticles and antinodal charge ordering in Ca2-xNaxCuO2Cl2. Science 2005, 307, 901-904.

32

Damascelli, A.; Hussain, Z.; Shen, Z. X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 2003, 75, 473-541.

33

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.

34

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

Publication history
Copyright
Acknowledgements

Publication history

Received: 24 July 2018
Revised: 26 August 2018
Accepted: 05 September 2018
Published: 14 September 2018
Issue date: January 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

We thank I. Watanabe, H. Oinuma, D. Takane, S. Souma, K. Horiba, and H. Kumigashira for their assistance in ARPES experiments. This work was supported by JSPS KAKENHI Grants (Nos. JP25107003, JP15H05853, JP15H02105, and JP17H01139), KEK-PF (Proposal No. 2015S2-003 and 2018S2-001), Grant for Basic Science Research Projects from the Sumitomo Foundation, Science Research Projects from Iketani Science and Technology Foundation, the Program for Key Interdisciplinary Research, and World Premier International Research Center, Advanced Institute for Materials Research. Y. N. acknowledges support from GP-Spin at Tohoku University.

Return