Journal Home > Volume 12 , Issue 1

Photocathode with superior catalytic activity, long-term stability, and fast mass/electron transfer is highly desirable but challenging for dye-sensitized solar cell (DSC). Herein, the ZIF-67 grown on carbon cloth is successfully transformed into CoSe2 embedded in N-doped carbon nanocage (CoSe2/N-C) via a growth-carbonization-selenization process. The carbon cloth supported CoSe2/N-C, as photocathode of DSC, demonstrates a good long-term stability and high photovoltaic efficiency (8.40%), outperforming Pt. The good efficiency can be attributed to the high catalytic activity of CoSe2, fast mass transfer of porous three-dimensional (3D) structure, and good electron transport derived from the intimate contact between CoSe2 and highly conductive carbon cloth. The high stability would be ascribed to N-doped carbon coating that perfectly prevents CoSe2 from decomposition. This work will pave the way to develop highly efficient and stable Pt-free photocathode for DSC.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Porous N-doped-carbon coated CoSe2 anchored on carbon cloth as 3D photocathode for dye-sensitized solar cell with efficiency and stability outperforming Pt

Show Author's information Wenli Lu§Rui Jiang§Xiong Yin( )Leyu Wang( )
State Key Laboratory of Chemical Resource Engineering,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology,Beijing,100029,China;

§ Wenli Lu and Rui Jiang contributed equally to this work.

Abstract

Photocathode with superior catalytic activity, long-term stability, and fast mass/electron transfer is highly desirable but challenging for dye-sensitized solar cell (DSC). Herein, the ZIF-67 grown on carbon cloth is successfully transformed into CoSe2 embedded in N-doped carbon nanocage (CoSe2/N-C) via a growth-carbonization-selenization process. The carbon cloth supported CoSe2/N-C, as photocathode of DSC, demonstrates a good long-term stability and high photovoltaic efficiency (8.40%), outperforming Pt. The good efficiency can be attributed to the high catalytic activity of CoSe2, fast mass transfer of porous three-dimensional (3D) structure, and good electron transport derived from the intimate contact between CoSe2 and highly conductive carbon cloth. The high stability would be ascribed to N-doped carbon coating that perfectly prevents CoSe2 from decomposition. This work will pave the way to develop highly efficient and stable Pt-free photocathode for DSC.

Keywords: three-dimensional (3D) photocathode, metal-organic framework, selenization process, CoSe2, carbon cloth, tri-iodide reduction reaction

References(42)

1

O'Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737-740.

2

Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595-6663.

3

Wu, J. H.; Lan, Z.; Lin, J. M.; Huang, M. L.; Huang, Y. F.; Fan, L. Q.; Luo, G. G.; Lin, Y.; Xie, Y. M.; Wei, Y. L. Counter electrodes in dye-sensitized solar cells. Chem. Soc. Rev. 2017, 46, 5975-6023.

4

Lu, J. F.; Chang, Y. C.; Cheng, H. Y.; Wu, H. P.; Cheng, Y. B.; Wang, M. K.; Diau, E. W. G. Molecular engineering of organic dyes with a hole-extending donor tail for efficient all-solid-state dye-sensitized solar cells. ChemSusChem 2015, 8, 2529-2536.

5

Cheng, Y. B.; Pascoe, A.; Huang, F. Z.; Peng, Y. Print flexible solar cells. Nature 2016, 539, 488-489.

6

Cui, X. D.; Xie, Z. Q.; Wang, Y. Novel CoS2 embedded carbon nanocages by direct sulfurizing metal-organic frameworks for dye-sensitized solar cells. Nanoscale 2016, 8, 11984-11992.

7

Liu, R. Y.; Liu, Y. Q.; Zou, H. Y.; Song, T.; Sun, B. Q. Integrated solar capacitors for energy conversion and storage. Nano Res. 2017, 10, 1545-1559.

8

Gong, F.; Wang, H.; Xu, X.; Zhou, G.; Wang, Z. S. In situ growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. J. Am. Chem. Soc. 2012, 134, 10953-10958.

9

Duan, Y. Y.; Tang, Q. W.; Liu, J.; He, B. L.; Yu, L. M. Transparent metal selenide alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells. Angew. Chem., Int. Ed. 2014, 53, 14569-14574.

10

Yun, S. N.; Lund, P. D.; Hinsch, A. Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells. Energy Environ. Sci. 2015, 8, 3495-3514.

11

Xue, Y. H.; Liu, J.; Chen, H.; Wang, R. G.; Li, D. Q.; Qu, J.; Dai, L. M. Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells. Angew. Chem., Int. Ed. 2012, 51, 12124-12127.

12

Tang, Q. W.; Zhang, H. H.; Meng, Y. Y.; He, B. L.; Yu, L. M. Dissolution engineering of platinum alloy counter electrodes in dye-sensitized solar cells. Angew. Chem., Int. Ed. 2015, 54, 11448-11452.

13

Cui, X. J.; Xiao, J. P.; Wu, Y. H.; Du, P. P.; Si, R.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Zhang, W. H.; Deng, D. H. et al. A graphene composite material with single cobalt active sites: A highly efficient counter electrode for dyesensitized solar cells. Angew. Chem., Int. Ed. 2016, 55, 6708-6712.

14

Zhang, M. M.; Zai, J. T.; Liu, J.; Chen, M.; Wang, Z. R.; Li, G.; Qian, X. F.; Qian, L. W.; Yu, X. B. A hierarchical CoFeS2/reduced graphene oxide composite for highly efficient counter electrodes in dye-sensitized solar cells. Dalton Trans. 2017, 46, 9511-9516.

15

Yi, L. X.; Liu, Y. Y.; Yang, N. L.; Tang, Z. Y.; Zhao, H. J.; Ma, G. H.; Su, Z. G.; Wang, D. One dimensional CuInS2-ZnS heterostructured nanomaterials as low-cost and high-performance counter electrodes of dye-sensitized solar cells. Energy Environ. Sci. 2013, 6, 835-840.

16

Zhou, H. W.; Shi, Y. T.; Dong, Q. S.; Wang, Y. X.; Zhu, C.; Wang, L.; Wang, N.; Wei, Y.; Tao, S. Y.; Ma, T. L. Interlaced W18O49 nanofibers as a superior catalyst for the counter electrode of highly efficient dye-sensitized solar cells. J. Mater. Chem. A. 2014, 2, 4347-4354.

17

Li, X.; Pan, K.; Qu, Y.; Wang, G. F. One-dimension carbon self-doping g-C3N4 nanotubes: Synthesis and application in dye-sensitized solar cells. Nano Res. 2018, 11, 1322-1330.

18

Ni, B.; Ouyang, C.; Xu, X. B.; Zhuang, J.; Wang, X. Modifying commercial carbon with trace amounts of ZIF to prepare derivatives with superior ORR activities. Adv. Mater. 2017, 29, 1701354.

19

Yang, J.; Zhang, F. J.; Lu, H. Y.; Hong, X.; Jiang, H. L.; Wu, Y. E.; Li, Y. D. Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem., Int. Ed. 2015, 54, 10889-10893.

20

Yang, J.; He, D. S.; Chen, W. X.; Zhu, W.; Zhang, H.; Ren, S.; Wang, X.; Yang, Q. H.; Wu, Y. E.; Li, Y. D. Bimetallic Ru-Co clusters derived from a confined alloying process within zeolite-imidazolate frameworks for efficient NH3 decomposition and synthesis. ACS Appl. Mater. Interfaces 2017, 9, 39450-39455.

21

Yin, X.; Guo, Y. J.; Xue, Z. S.; Xu, P.; He, M.; Liu, B. Performance enhancement of perovskite-sensitized mesoscopic solar cells using Nb-doped TiO2 compact layer. Nano Res. 2015, 8, 1997-2003.

22

Xue, Z. S.; Zhang, W.; Yin, X.; Cheng, Y. M.; Wang, L.; Liu, B. Enhanced conversion efficiency of flexible dye-sensitized solar cells by optimization of the nanoparticle size with an electrophoretic deposition technique. RSC Adv. 2012, 2, 7074-7080.

23

Xu, Z. Z.; Yin, X.; Guo, Y. J.; Pu, Y.; He, M. Ru-doping in TiO2 electron transport layers of planar heterojunction perovskite solar cells for enhanced performance. J. Mater. Chem. C 2018, 6, 4746-4752.

24

Dai, X. Y.; Chen, Z.; Yao, T.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Wei, S. Q. et al. Single Ni sites distributed on N-doped carbon for selective hydrogenation of acetylene. Chem. Commun. 2017, 53, 11568-11571.

25

Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 130, 1962-1966.

26

Pan, Y.; Sun, K. A.; Liu, S. J.; Cheong, W. C.; Chen, Z.; Wang, Y.; Liu, Y. Q.; Wang, D. S.; Peng, Q.; Chen, C. et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610-2618.

27

Li, X. Y.; Jiang, Q. Q.; Dou, S.; Deng, L. B.; Huo, J.; Wang, S. Y. ZIF-67-derived Co-NC@CoP-NC nanopolyhedra as an efficient bifunctional oxygen electrocatalyst. J. Mater. Chem. A. 2016, 4, 15836-15840.

28

Song, J. H.; Zhu, C. Z.; Xu, B. Z.; Fu, S. F.; Engelhard, M. H.; Ye, R. F.; Du, D.; Beckman, S. P.; Lin, Y. H. Bimetallic cobalt-based phosphide zeolitic imidazolate framework: CoPx phase-dependent electrical conductivity and hydrogen atom adsorption energy for efficient overall water splitting. Adv. Energy Mater. 2017, 7, 1601555.

29

Zhang, H. X.; Yang, B.; Wu, X. L.; Li, Z. J.; Lei, L. C.; Zhang, X. W. Polymorphic CoSe2 with mixed orthorhombic and cubic phases for highly efficient hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2015, 7, 1772-1779.

30

Zhou, W. J.; Lu, J.; Zhou, K.; Yang, L. J.; Ke, Y. T.; Tang, Z. H.; Chen, S. W. CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction. Nano Energy 2016, 28, 143-150.

31

Ekspong, J.; Sharifi, T.; Shchukarev, A.; Klechikov, A.; Wågberg, T.; Gracia-Espino, E. Stabilizing active edge sites in semicrystalline molybdenum sulfide by anchorage on nitrogen-doped carbon nanotubes for hydrogen evolution reaction. Adv. Funct. Mater. 2016, 26, 6766-6776.

32

Liu, K. L.; Wang, F. M.; Xu, K.; Shifa, T. A.; Cheng, Z. Z.; Zhan, X. Y.; He, J. CoS2xSe2(1−x) nanowire array: An efficient ternary electrocatalyst for the hydrogen evolution reaction. Nanoscale 2016, 8, 4699-4704.

33

Chen, T.; Li, S. Z.; Wen, J.; Gui, P. B.; Fang, G. J. Metal organic framework template derived porous CoSe2 nanosheet arrays for energy conversion and storage. ACS Appl. Mater. Interfaces 2017, 9, 35927-35935.

34

Qu, K. G.; Zheng, Y.; Jiao, Y.; Zhang, X. X.; Dai, S.; Qiao, S. Z. Polydopamine-inspired, dual heteroatom-doped carbon nanotubes for highly efficient overall water splitting. Adv. Energy Mater. 2017, 7, 1602068.

35

Lai, Q. X.; Zhao, Y. X.; Liang, Y. Y.; He, J. P.; Chen, J. H. In situ confinement pyrolysis transformation of ZIF-8 to nitrogen-enriched meso-microporous carbon frameworks for oxygen reduction. Adv. Funct. Mater. 2016, 26, 8334-8344.

36

Ye, L.; Chai, G. L.; Wen, Z. H. Zn-MOF-74 derived N-doped mesoporous carbon as pH-universal electrocatalyst for oxygen reduction reaction. Adv. Funct. Mater. 2017, 27, 1606190.

37

Yin, X.; Wu, F.; Fu, N. Q.; Han, J.; Chen, D. L.; Xu, P.; He, M.; Lin, Y. Facile synthesis of poly(3, 4-ethylenedioxythiophene) film via solid-state polymerization as high-performance Pt-free counter electrodes for plastic dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2013, 5, 8423-8429.

38

Dong, F. Y.; Guo, Y. J.; Xu, P.; Yin, X.; Li, Y. G.; He, M. Hydrothermal growth of MoS2/Co3S4 composites as efficient Pt-free counter electrodes for dye-sensitized solar cells. Sci. China-Mater. 2017, 60, 295-303.

39

Liu, Z.; Sun, F.; Gu, L.; Chen, G.; Shang, T. T.; Liu, J.; Le, Z. Y.; Li, X. Y.; Wu, H. B.; Lu, Y. F. Post iron decoration of mesoporous nitrogen-doped carbon spheres for efficient electrochemical oxygen reduction. Adv. Energy Mater. 2017, 7, 1701154.

40

Chen, T. Y.; Huang, Y. J.; Li, C. T.; Kung, C. W.; Vittal, R.; Ho, K. C. Metal-organic framework/sulfonated polythiophene on carbon cloth as a flexible counter electrode for dye-sensitized solar cells. Nano Energy 2017, 32, 19-27.

41

Wang, Y. C.; Wang, D. Y.; Jiang, Y. T.; Chen, H. A.; Chen, C. C.; Ho, K. C.; Chou, H. L.; Chen, C. W. FeS2 nanocrystal ink as a catalytic electrode for dye-sensitized solar cells. Angew. Chem., Int. Ed. 2013, 52, 6694-6698.

42

Casaluci, S.; Gemmi, M.; Pellegrini, V.; Di Carlo, A.; Bonaccorso, F. Graphene-based large area dye-sensitized solar cell modules. Nanoscale 2016, 8, 5368-5378.

File
12274_2018_2195_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 June 2018
Revised: 29 August 2018
Accepted: 04 September 2018
Published: 17 September 2018
Issue date: January 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This research was supported in part by the National Natural Science Foundation of China (Nos. 21725501, 21771019, 21475007 and 21675009), and the Fundamental Research Funds for the Central Universities (Nos. buctrc201706, buctrc201815 and buctrc201812). We also thank the support from the Public Hatching Platform for Recruited Talents of Beijing University of Chemical Technology.

Return