Journal Home > Volume 12 , Issue 1

Vertical heterostructures based on two-dimensional (2D) materials have attracted widespread interest for their numerous applications in electronic and optoelectronic devices. Herein, we report the direct construction of an abnormal graphene/ReSe2 stack on Au foils by a two-step chemical vapor deposition (CVD) strategy. During the second growth stage, monolayer ReSe2 is found to preferentially evolve at the interface between the first-grown graphene layer and the Au substrate. The unusual stacking behavior is unraveled by in-situ pcutting openq the upper graphene from the defects to expose the lower ReSe2 using scanning tunneling microscopy (STM). From combination of these results with density functional theory calculations, the domain boundaries and edge sites of graphene are proposed to be adsorption sites for Re and Se precursors, further facilitating the growth of ReSe2 at the van der Waals gap of graphene/Au. This work hereby offers an intriguing strategy for obtaining vertical 2D heterostructures featured with an ultra-clean interface and a designed stacking geometry.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Space-confined growth of monolayer ReSe2 under a graphene layer on Au foils

Show Author's information Chunyu Xie1,2,§Shaolong Jiang1,2,§Xiaolong Zou3,§Yuanwei Sun4,5Liyun Zhao1Min Hong1,2Shulin Chen4,6Yahuan Huan1,2Jianping Shi1,2Xiebo Zhou1,2Zhepeng Zhang1,2Pengfei Yang1,2Yuping Shi1,2Porun Liu7Qing Zhang1Peng Gao4,5,8Yanfeng Zhang1,2( )
Department of Materials Science and Engineering,College of Engineering, Peking University,Beijing,100871,China;
Center for Nanochemistry (CNC),Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University,Beijing,100871,China;
Tsinghua-Berkeley Shenzhen Institute (TBSI),Tsinghua University,Shenzhen,518055,China;
Electron Microscopy Laboratory,School of Physics, Peking University,Beijing,100871,China;
International Center for Quantum Materials,School of Physics, Peking University,Beijing,100871,China;
State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,Harbin,150001,China;
Centre for Clean Environment and Energy,Griffith University,Gold Coast,4222,Australia;
Collaborative Innovation Center of Quantum Matter,Beijing,100871,China;

§ Chunyu Xie, Shaolong Jiang, and Xiaolong Zou contributed equally to this work.

Abstract

Vertical heterostructures based on two-dimensional (2D) materials have attracted widespread interest for their numerous applications in electronic and optoelectronic devices. Herein, we report the direct construction of an abnormal graphene/ReSe2 stack on Au foils by a two-step chemical vapor deposition (CVD) strategy. During the second growth stage, monolayer ReSe2 is found to preferentially evolve at the interface between the first-grown graphene layer and the Au substrate. The unusual stacking behavior is unraveled by in-situ pcutting openq the upper graphene from the defects to expose the lower ReSe2 using scanning tunneling microscopy (STM). From combination of these results with density functional theory calculations, the domain boundaries and edge sites of graphene are proposed to be adsorption sites for Re and Se precursors, further facilitating the growth of ReSe2 at the van der Waals gap of graphene/Au. This work hereby offers an intriguing strategy for obtaining vertical 2D heterostructures featured with an ultra-clean interface and a designed stacking geometry.

Keywords: graphene, chemical vapor deposition, scanning tunneling microscopy, rhenium selenide, two-dimensional (2D) heterostructure

References(73)

1

Offidani, M.; Milletarì, M.; Raimondi, R.; Ferreira, A. Optimal charge-to- spin conversion in graphene on transition-metal dichalcogenides. Phys. Rev. Lett. 2017, 119, 196801.

2

Li, W.; Ding, H.; Deng, P.; Chang, K.; Song, C. L.; He, K.; Wang, L. L.; Ma, X. C.; Hu, J. P.; Chen, X. et al. Phase separation and magnetic order in K-doped iron selenide superconductor. Nat. Phys. 2011, 8, 126-130.

3

Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100-103.

4

Tang, H. L.; Chiu, M. H.; Tseng, C. C.; Yang, S. H.; Hou, K. J.; Wei, S. Y.; Huang, J. K.; Lin, Y. F.; Lien, C. H.; Li, L. J. Multilayer graphene-WSe2 heterostructures for WSe2 transistors. ACS Nano 2017, 11, 12817-12823.

5

Yu, L. L.; Lee, Y. H.; Ling, X.; Santos, E. J. G.; Shin, Y. C.; Lin, Y. X.; Dubey, M.; Kaxiras, E.; Kong, J.; Wang, H. et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 2014, 14, 3055-3063.

6

Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301-306.

7

Massicotte, M.; Schmidt, P.; Vialla, F.; Schädler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 2015, 11, 42-46.

8

Zhang, W. J.; Chuu, C. P.; Huang, J. K.; Chen, C. H.; Tsai, M. L.; Chang, Y. H.; Liang, C. T.; Chen, Y. Z.; Chueh, Y. L.; He, J. H. et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. 2014, 4, 3826.

9

Wang, Q. S.; Wen, Y.; He, P.; Yin, L.; Wang, Z. X.; Wang, F.; Xu, K.; Huang, Y.; Wang, F. M.; Jiang, C. et al. High-performance phototransistor of epitaxial PbS nanoplate-graphene heterostructure with edge contact. Adv. Mater. 2016, 28, 6497-6503.

10

Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218-230.

11

Haigh, S. J.; Gholinia, A.; Jalil, R.; Romani, S.; Britnell, L.; Elias, D. C.; Novoselov, K. S.; Ponomarenko, L. A.; Geim, A. K.; Gorbachev, R. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 2012, 11, 764-767.

12

Yu, W. J.; Liu, Y.; Zhou, H. L.; Yin, A. X.; Li, Z.; Huang, Y.; Duan, X. F. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 2013, 8, 952-958.

13

Tan, C. L.; Zhang, H. Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. J. Am. Chem. Soc. 2015, 137, 12162-12174.

14

Chen, Z. L.; Guan, B. L.; Chen, X. D.; Zeng, Q.; Lin, L.; Wang, R. Y.; Priydarshi, M. K.; Sun, J. Y.; Zhang, Z. P.; Wei, T. B. et al. Fast and uniform growth of graphene glass using confined-flow chemical vapor deposition and its unique applications. Nano Res. 2016, 9, 3048-3055.

15

Shi, Y. M.; Zhou, W.; Lu, A. Y.; Fang, W. J.; Lee, Y. H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L. J. et al. Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 2012, 12, 2784-2791.

16

Shi, J. P.; Liu, M. X.; Wen, J. X.; Ren, X. B.; Zhou, X. B.; Ji, Q. Q.; Ma, D. L.; Zhang, Y.; Jin, C. J.; Chen, H. J. et al. All chemical vapor deposition synthesis and intrinsic bandgap observation of MoS2/graphene heterostructures. Adv. Mater. 2015, 27, 7086-7092.

17

Zhang, Z. P.; Ji, X. J.; Shi, J. P.; Zhou, X. B.; Zhang, S.; Hou, Y.; Qi, Y.; Fang, Q. Y.; Ji, Q. Q.; Zhang, Y. et al. Direct chemical vapor deposition growth and band-gap characterization of MoS2/h-BN van der Waals heterostructures on Au foils. ACS Nano 2017, 11, 4328-4336.

18

Fu, L.; Sun, Y. Y.; Wu, N.; Mendes, R. G.; Chen, L. F.; Xu, Z.; Zhang, T.; Rümmeli, M. H.; Rellinghaus, B.; Pohl, D. et al. Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano 2016, 10, 2063-2070.

19

Li, G.; Zhou, H. T.; Pan, L. D.; Zhang, Y.; Huang, L.; Xu, W. Y.; Du, S. X.; Ouyang, M.; Ferrari, A. C.; Gao, H. J. Role of cooperative interactions in the intercalation of heteroatoms between graphene and a metal substrate. J. Am. Chem. Soc. 2015, 137, 7099-7103.

20

Yan, A. M.; Velasco, J. Jr.; Kahn, S.; Watanabe, K.; Taniguchi, T.; Wang, F.; Crommie, M. F.; Zettl, A. Direct growth of single- and few-layer MoS2 on h-BN with preferred relative rotation angles. Nano Lett. 2015, 15, 6324-6331.

21

Yu, H.; Yang, Z. Z.; Du, L. J.; Zhang, J.; Shi, J. A.; Chen, W.; Chen, P.; Liao, M. Z.; Zhao, J.; Meng, J. L. et al. Precisely aligned monolayer MoS2 epitaxially grown on h-BN basal plane. Small 2017, 13, 1603005.

22

Li, H.; Wu, J. B.; Ran, F. R.; Lin, M. L.; Liu, X. L.; Zhao, Y. Y.; Lu, X.; Xiong, Q. H.; Zhang, J.; Huang, W. et al. Interfacial interactions in van der Waals heterostructures of MoS2 and graphene. ACS Nano 2017, 11, 11714-11723.

23

Varykhalov, A.; Sánchez-Barriga, J.; Shikin, A. M.; Biswas, C.; Vescovo, E.; Rybkin, A.; Marchenko, D.; Rader, O. Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys. Rev. Lett. 2008, 101, 157601.

24

Gierz, I.; Suzuki, T.; Weitz, R. T.; Lee, D. S.; Krauss, B.; Riedl, C.; Starke, U.; Hö chst, H.; Smet, J. H.; Ast, C. R. et al. Electronic decoupling of an epitaxial graphene monolayer by gold intercalation. Phys. Rev. B 2010, 81, 235408.

25

Virojanadara, C.; Watcharinyanon, S.; Zakharov, A. A.; Johansson, L. I. Epitaxial graphene on 6H-SiC and Li intercalation. Phys. Rev. B 2010, 82, 205402.

26

Petrović, M.; Šrut Rakić, I.; Runte, S.; Busse, C.; Sadowski, J. T.; Lazić, P.; Pletikosić, I.; Pan, Z. H.; Milun, M.; Pervan, P. et al. The mechanism of caesium intercalation of graphene. Nat. Commun. 2013, 4, 2772.

27

Weser, M.; Voloshina, E. N.; Horn, K.; Dedkov, Y. S. Electronic structure and magnetic properties of the graphene/Fe/Ni(111) intercalation-like system. Phys. Chem. Chem. Phys. 2011, 13, 7534-7539.

28

Gao, T.; Gao, Y. B.; Chang, C. Z.; Chen, Y. B.; Liu, M. X.; Xie, S. B.; He, K.; Ma, X. C.; Zhang, Y. F.; Liu, Z. F. Atomic-scale morphology and electronic structure of manganese atomic layers underneath epitaxial graphene on SiC(0001). ACS Nano 2012, 6, 6562-6568.

29

Zhang, Y.; Zhang, Y. F.; Ma, D. L.; Ji, Q. Q.; Fang, W.; Shi, J. P.; Gao, T.; Liu, M. X.; Gao, Y. B.; Chen, Y. B. et al. Mn atomic layers under inert covers of graphene and hexagonal boron nitride prepared on Rh(111). Nano Res. 2013, 6, 887-896.

30

Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A. A.; Starke, U. Quasi-free- standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804.

31

Sutter, P.; Sadowski, J. T.; Sutter, E. A. Chemistry under cover: Tuning metal-graphene interaction by reactive intercalation. J. Am. Chem. Soc. 2010, 132, 8175-8179.

32

Duong, D. L.; Han, G. H.; Lee, S. M.; Gunes, F.; Kim, E. S.; Kim, S. T.; Kim, H.; Ta, Q. H.; So, K. P.; Yoon, S. J. et al. Probing graphene grain boundaries with optical microscopy. Nature 2012, 490, 235-239.

33

Feng, X. F.; Maier, S.; Salmeron, M. Water splits epitaxial graphene and intercalates. J. Am. Chem. Soc. 2012, 134, 5662-5668.

34

Grånäs, E.; Andersen, M.; Arman, M. A.; Gerber, T.; Hammer, B.; Schnadt, J.; Andersen, J. N.; Michely, T.; Knudsen, J. CO intercalation of graphene on Ir(111) in the millibar regime. J. Phys. Chem. C 2013, 117, 16438-16447.

35

Zhang, Y. H.; Weng, X. F.; Li, H.; Li, H. B.; Wei, M. M.; Xiao, J. P.; Liu, Z.; Chen, M. S.; Fu, Q.; Bao, X. H. Hexagonal boron nitride cover on Pt(111): A new route to tune molecule-metal interaction and metal-catalyzed reactions. Nano Lett. 2015, 15, 3616-3623.

36

Cui, Y.; Gao, J. F.; Jin, L.; Zhao, J. J.; Tan, D. L.; Fu, Q.; Bao, X. H. An exchange intercalation mechanism for the formation of a two-dimensional Si structure underneath graphene. Nano Res. 2012, 5, 352-360.

37

Hao, Y. F.; Wang, L.; Liu, Y. Y.; Chen, H.; Wang, X. H.; Tan, C.; Nie, S.; Suk, J. W.; Jiang, T. F.; Liang, T. F. et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 2016, 11, 426-431.

38

Zhou, S. S.; Gan, L.; Wang, D. L.; Li, H. Q.; Zhai, T. Y. Space-confined vapor deposition synthesis of two dimensional materials. Nano Res. 2018, 11, 2909-2931.

39

Li, Q. Y.; Chou, H.; Zhong, J. H.; Liu, J. Y.; Dolocan, A.; Zhang, J. Y.; Zhou, Y. Y.; Ruoff, R. S.; Chen, S. S.; Cai, W. W. Growth of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett. 2013, 13, 486-490.

40

Yang, Y.; Fu, Q.; Li, H. B.; Wei, M. M.; Xiao, J. P.; Wei, W.; Bao, X. H. Creating a nanospace under an h-BN cover for adlayer growth on nickel(111). ACS Nano 2015, 9, 11589-11598.

41

Al Balushi, Z. Y.; Wang, K.; Ghosh, R. K.; Vilá, R. A.; Eichfeld, S. M.; Caldwell, J. D.; Qin, X. Y.; Lin, Y. C.; DeSario, P. A.; Stone, G. et al. Two-dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 2016, 15, 1166-1171.

42

Zhou, X. B.; Qi, Y.; Shi, J. P.; Niu, J. J.; Liu, M. X.; Zhang, G. H.; Li, Q. C.; Zhang, Z. P.; Hong, M.; Ji, Q. Q. et al. Modulating the electronic properties of monolayer graphene using a periodic quasi-one-dimensional potential generated by hex-reconstructed Au(001). ACS Nano 2016, 10, 7550-7557.

43

Jiang, S. L.; Hong, M.; Wei, W.; Zhao, L. Y.; Zhang, N.; Zhang, Z. P.; Yang, P. F.; Gao, N.; Zhou, X. B.; Xie, C. Y. et al. Direct synthesis and in situ characterization of monolayer parallelogrammic rhenium diselenide on gold foil. Commun. Chem. 2018, 1, 17.

44

Rutter, G. M.; Crain, J. N.; Guisinger, N. P.; Li, T.; First, P. N.; Stroscio, J. A. Scattering and interference in epitaxial graphene. Science 2007, 317, 219-222.

45

Gong, C. H.; Zhang, Y. X.; Chen, W.; Chu, J. W.; Lei, T. Y.; Pu, J. R.; Dai, L. P.; Wu, C. Y.; Cheng, Y. H.; Zhai, T. Y. et al. Electronic and optoelectronic applications based on 2D novel anisotropic transition metal dichalcogenides. Adv. Sci. 2017, 4, 1700231.

46

Hafeez, M.; Gan, L.; Saleem Bhatti, A.; Zhai, T. Y. Rhenium dichalcogenides (ReX2, X = S or Se): An emerging class of TMDs family. Mater. Chem. Front. 2017, 1, 1917-1932.

47

Parkinson, B. A.; Ren, J.; Whangbo, M. H. Relationship of STM and AFM images to the local density of states in the valence and conduction bands of rhenium selenide (ReSe2). J. Am. Chem. Soc. 1991, 113, 7833-7837.

48

Zhong, H. X.; Gao, S. Y.; Shi, J. J.; Yang, L. Quasiparticle band gaps, excitonic effects, and anisotropic optical properties of the monolayer distorted 1T diamond-chain structures ReS2 and ReSe2. Phys. Rev. B 2015, 92, 115438.

49

Kelty, S. P.; Ruppert, A. F.; Chianelli, R. R.; Ren, J.; Whangbo, M. H. Scanning probe microscopy study of layered dichalcogenide ReS2. J. Am. Chem. Soc. 1994, 116, 7857-7863.

50

Zhang, E. Z.; Wang, P.; Li, Z.; Wang, H. F.; Song, C. Y.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K. K.; Lu, S. H. et al. Tunable ambipolar polarization- sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 2016, 10, 8067-8077.

51

Hafeez, M.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic Raman property and optoelectronic application. Adv. Mater. 2016, 28, 8296-8301.

52

Cui, F. F.; Feng, Q. L.; Hong, J. H.; Wang, R. Y.; Bai, Y.; Li, X. B.; Liu, D. Y.; Zhou, Y.; Liang, X.; He, X. X. et al. Synthesis of large-size 1T' ReS2xSe2(1-x) alloy monolayer with tunable bandgap and carrier type. Adv. Mater. 2017, 29, 1705015.

53

Shi, J. P.; Tong, R.; Zhou, X. B.; Gong, Y.; Zhang, Z. P.; Ji, Q. Q.; Zhang, Y.; Fang, Q.; Gu, L. Y.; Wang, X. N. et al. Temperature-mediated selective growth of MoS2/WS2 and WS2/MoS2 vertical stacks on Au foils for direct photocatalytic applications. Adv. Mater. 2016, 28, 10664-10672.

54

Gao, T.; Song, X. J.; Du, H. W.; Nie, Y. F.; Chen, Y. B.; Ji, Q. Q.; Sun, J. Y.; Yang, Y. L.; Zhang, Y. F.; Liu, Z. F. Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures. Nat. Commun. 2015, 6, 6835.

55

Fu, Q.; Bao, X. H. Surface chemistry and catalysis confined under two- dimensional materials. Chem. Soc. Rev. 2017, 46, 1842-1874.

56

Preobrajenski, A. B.; Ng, M. L.; Vinogradov, A. S.; Mårtensson, N. Controlling graphene corrugation on lattice-mismatched substrates. Phys. Rev. B 2008, 78, 073401.

57

Yao, Y. X.; Fu, Q.; Zhang, Y. Y.; Weng, X. F.; Li, H.; Chen, M. S.; Jin, L.; Dong, A. Y.; Mu, R. T.; Jiang, P. et al. Graphene cover-promoted metal- catalyzed reactions. Proc. Natl. Acad. Sci. USA 2014, 111, 17023-17028.

58

Lyo, I. W.; Avouris, P. Field-induced nanometer- to atomic-scale manipulation of silicon surfaces with the STM. Science 1991, 253, 173-176.

59

Eigler, D. M.; Lutz, C. P.; Rudge, W. E. An atomic switch realized with the scanning tunnelling microscope. Nature 1991, 352, 600-603.

60

Rubio-Verdú, C.; Sáenz-Arce, G.; Martinez-Asencio, J.; Milan, D. C.; Moaied, M.; Palacios, J. J.; Caturla, M. J.; Untiedt, C. Graphene flakes obtained by local electro-exfoliation of graphite with a STM tip. Phys. Chem. Chem. Phys. 2017, 19, 8061-8068.

61

Rutter, G. M.; Guisinger, N. P.; Crain, J. N.; Jarvis, E. A. A.; Stiles, M. D.; Li, T.; First, P. N.; Stroscio, J. A. Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling microscopy. Phys. Rev. B 2007, 76, 235416.

62

He, K. T.; Koepke, J. C.; Barraza-Lopez, S.; Lyding, J. W. Separation- dependent electronic transparency of monolayer graphene membranes on Ⅲ-Ⅴ semiconductor substrates. Nano Lett. 2010, 10, 3446-3452.

63

Xu, Y.; He, K. T.; Schmucker, S. W.; Guo, Z.; Koepke, J. C.; Wood, J. D.; Lyding, J. W.; Aluru, N. R. Inducing electronic changes in graphene through silicon (100) substrate modification. Nano Lett. 2011, 11, 2735-2742.

64

Jin, L.; Fu, Q.; Mu, R. T.; Tan, D. L.; Bao, X. H. Pb intercalation underneath a graphene layer on Ru(0001) and its effect on graphene oxidation. Phys. Chem. Chem. Phys. 2011, 13, 16655-16660.

65

Emtsev, K. V.; Zakharov, A. A.; Coletti, C.; Forti, S.; Starke U. Ambipolar doping in quasifree epitaxial graphene on SiC(0001) controlled by Ge intercalation. Phys. Rev. B 2011, 84, 125423.

66

Rut'kov, E. V.; Gall', N. R. Role of edge atoms of graphene islands on metals in nucleation, growth, alkali metal intercalation. Phys. Solid State 2009, 51, 1738-1743.

67

Mu, R. T.; Fu, Q.; Jin, L.; Yu, L.; Fang, G. Z.; Tan, D. L.; Bao, X. H. Visualizing chemical reactions confined under graphene. Angew. Chem. , Int. Ed. 2012, 51, 4856-4859.

68

Shi, J. P.; Zhou, X. B.; Han, G. F.; Liu, M. X.; Ma, D. L.; Sun, J. Y.; Li, C.; Ji, Q. Q.; Zhang, Y.; Song, X. J. et al. Narrow-gap quantum wires arising from the edges of monolayer MoS2 synthesized on graphene. Adv. Mater. Interfaces 2016, 3, 1600332.

69

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total- energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.

70

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.

71

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.

72

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

73

Tkatchenko, A.; Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009, 102, 073005.

File
12274_2018_2194_MOESM1_ESM.pdf (3.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 June 2018
Revised: 09 August 2018
Accepted: 04 September 2018
Published: 28 September 2018
Issue date: January 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51472008, 51861135201, 51290272, 61774003, 51502007, and 51672007), the National Key Research and Development Program of China (Nos. 2016YFA0200103, 2017YFA0205700, and 2017YFA0304600), the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Nos. KF201601 and KF201604) and "2011 Program" Peking-Tsinghua-IOP Collaborative Innovation Center of Quantum Matter. The authors acknowledge Electron Microscopy Laboratory in Peking University for the use of Cs corrected electron microscope. The theoretical simulations of this work were supported by the Youth 1000-Talent Program of China, the Shenzhen Basic Research Project (No. JCYJ20170407155608882), and the Development and Reform Commission of Shenzhen Municipality for the development of the "Low-Dimensional Materials and Devices" Discipline. The computations were carried out at National Supercomputer Center in Tianjin, and the calculations were performed on TianHe-1 (A).

Return