Journal Home > Volume 12 , Issue 1

Quasi-two-dimensional (2D) β-Ga2O3 is a rediscovered metal-oxide semiconductor with an ultra-wide bandgap of 4.6–4.9 eV. It has been reported to be a promising material for next-generation power and radio frequency electronics. Field effect transistors (FETs) that can switch at high voltage are key components in power and radio frequency devices, and reliable Ohmic contacts are essential for high FET performance. However, obtaining low contact resistance on β-Ga2O3 FETs is difficult since reactions between β-Ga2O3 and metal contacts are not fully understood. Herein, we experimentally demonstrate the importance of reactions at the metal/β-Ga2O3 interface and the corresponding effects of these reactions on FET performance. When Ti is employed as the metal contact, annealing of β-Ga2O3 FETs in argon can effectively transform Schottky contacts into Ohmic contacts and permit a large drain current density of ~ 3.1 mA/μm. The contact resistance (Rcontact) between the Ti electrodes and β-Ga2O3 decreased from ~ 430 to ~ 0.387 Ω·mm after annealing. X-ray photoelectron spectroscopy (XPS) confirmed the formation of oxygen vacancies at the Ti/β-Ga2O3 interface after annealing, which is believed to cause the improved FET performance. The results of this study pave the way for greater application of β-Ga2O3 in electronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Quasi-two-dimensional β-Ga2O3 field effect transistors with large drain current density and low contact resistance via controlled formation of interfacial oxygen vacancies

Show Author's information Zhen Li§Yihang Liu§Anyi ZhangQingzhou LiuChenfei ShenFanqi WuChi XuMingrui ChenHongyu FuChongwu Zhou( )
Ming Hsieh Department of Electrical Engineering, Mork Family Department of Chemical Engineering and Material Science, Department of Physics and Astronomy, University of Southern California, Los Angeles, California, 90089, USA;

§ Zhen Li and Yihang Liu contributed equally to this work.

Abstract

Quasi-two-dimensional (2D) β-Ga2O3 is a rediscovered metal-oxide semiconductor with an ultra-wide bandgap of 4.6–4.9 eV. It has been reported to be a promising material for next-generation power and radio frequency electronics. Field effect transistors (FETs) that can switch at high voltage are key components in power and radio frequency devices, and reliable Ohmic contacts are essential for high FET performance. However, obtaining low contact resistance on β-Ga2O3 FETs is difficult since reactions between β-Ga2O3 and metal contacts are not fully understood. Herein, we experimentally demonstrate the importance of reactions at the metal/β-Ga2O3 interface and the corresponding effects of these reactions on FET performance. When Ti is employed as the metal contact, annealing of β-Ga2O3 FETs in argon can effectively transform Schottky contacts into Ohmic contacts and permit a large drain current density of ~ 3.1 mA/μm. The contact resistance (Rcontact) between the Ti electrodes and β-Ga2O3 decreased from ~ 430 to ~ 0.387 Ω·mm after annealing. X-ray photoelectron spectroscopy (XPS) confirmed the formation of oxygen vacancies at the Ti/β-Ga2O3 interface after annealing, which is believed to cause the improved FET performance. The results of this study pave the way for greater application of β-Ga2O3 in electronics.

Keywords: field effect transistor, quasi-two-dimensional material, metal-oxides, β-Ga2O3, contact resistance

References(55)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-699.

2

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.

3

Carey, B. J.; Ou, J. Z.; Clark, R. M.; Berean, K. J.; Zavabeti, A.; Chesman, A. S. R.; Russo, S. P.; Lau, D. W. M.; Xu, Z. Q.; Bao, Q. L. et al. Corrigendum: Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals. Nat. Commun. 2017, 8, 15116.

4

Liu, B. L.; Abbas, A.; Zhou, C. W. Two-dimensional semiconductors: From materials preparation to electronic applications. Adv. Electron. Mater. 2017, 3, 1700045.

5

Kalantar-Zadeh, K.; Ou, J. Z.; Daeneke, T.; Mitchell, A.; Sasaki, T.; Fuhrer, M. S. Two dimensional and layered transition metal oxides. Appl. Mater. Today 2016, 5, 73-89.

6

Hwang, W. S.; Verma, A.; Peelaers, H.; Protasenko, V.; Rouvimov, S.; Xing, H. L.; Seabaugh, A.; Haensch, W.; van de Walle, C.; Galazka, Z. et al. High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes. Appl. Phys. Lett. 2014, 104, 203111.

7

Higashiwaki, M.; Sasaki, K.; Kamimura, T.; Hoi Wong, M.; Krishnamurthy, D.; Kuramata, A.; Masui, T.; Yamakoshi, S. Depletion-mode Ga2O3 metal- oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics. Appl. Phys. Lett. 2013, 103, 123511.

8

Irmscher, K.; Galazka, Z.; Pietsch, M.; Uecker, R.; Fornari, R. Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method. J. Appl. Phys. 2011, 110, 063720.

9

Zhou, H.; Si, M. W; Alghamdi, S.; Qiu, G.; Yang, L. M.; Ye, P. D. High- performance depletion/enhancement-ode β-Ga2O3 on insulator (GOOI) field-effect transistors with record drain currents of 600/450 mA/mm. IEEE Electron Device Lett. 2017, 38, 103-106.

10

Wu, F. Q.; Chen, L.; Zhang, A. Y.; Hong, Y. L.; Shih, N. Y.; Cho, S. Y.; Drake, G. A.; Fleetham, T.; Cong, S.; Cao, X. et al. High-performance sub-micrometer channel WSe2 field-effect transistors prepared using a flood-dike printing method. ACS Nano 2017, 11, 12536-12546.

11

Galazka, Z.; Uecker, R.; Irmscher, K.; Albrecht, M.; Klimm, D.; Pietsch, M.; Brützam, M.; Bertram, R.; Ganschow, S.; Fornari, R. Czochralski growth and characterization of β-Ga2O3 single crystals. Cryst. Res. Technol. 2010, 45, 1229-1236.

12

Åhman, J.; Svensson, G.; Albertsson, J. A reinvestigation of β-gallium oxide. Acta Cryst. Sect C 1996, 52, 1336-1338.

13

Lovejoy, T. C.; Yitamben, E. N.; Shamir, N.; Morales, J.; Villora, E. G.; Shimamura, K.; Zheng, S.; Ohuchi, F. S.; Olmstead, M. A. Surface morphology and electronic structure of bulk single crystal β-Ga2O3 (100). Appl. Phys. Lett. 2009, 94, 081906.

14

Ma, N.; Tanen, N.; Verma, A.; Guo, Z.; Luo, T. F.; Xing, H. L.; Jena, D. Intrinsic electron mobility limits in β-Ga2O3. Appl. Phys. Lett. 2016, 109, 212101.

15

Ramana, C. V.; Rubio, E. J.; Barraza, C. D.; Miranda Gallardo, A.; McPeak, S.; Kotru, S.; Grant, J. T. Chemical bonding, optical constants, and electrical resistivity of sputter-deposited gallium oxide thin films. J. Appl. Phys. 2014, 115, 043508.

16

Zhou, H.; Maize, K.; Noh, J.; Shakouri, A.; Ye, P. D. Thermodynamic studies of β-Ga2O3 nanomembrane field-effect transistors on a sapphire substrate. ACS Omega 2017, 2, 7723-7729.

17

Green, A. J.; Chabak, K. D.; Heller, E. R.; Fitch, R. C.; Baldini, M.; Fiedler, A.; Irmscher, K.; Wagner, G.; Galazka, Z.; Tetlak, S. E. et al. 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3MOSFETs. IEEE Electron Device Lett. 2016, 37, 902-905.

18

Wong, M. H.; Sasaki, K.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M. Field-plated Ga2O3MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett. 2016, 37, 212-215.

19

Green, A. J.; Chabak, K. D.; Baldini, M.; Moser, N.; Gilbert, R.; Fitch, R. C.; Wagner, G.; Galazka, Z.; McCandless, J.; Crespo, A. et al. β-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Lett. 2017, 38, 790-793.

20

Chang, P. C.; Fan, Z. Y.; Tseng, W. Y.; Rajagopal, A.; Lu, J. G. β-Ga2O3 nanowires: Synthesis, characterization, and p-channel field-effect transistor. Appl. Phys. Lett. 2005, 87, 222102.

21

Farzana, E.; Zhang, Z.; Paul, P. K.; Arehart, A. R.; Ringel, S. A. Influence of metal choice on (010) β-Ga2O3 Schottky diode properties. Appl. Phys. Lett. 2017, 110, 202102.

22

Yao, Y.; Davis, R. F.; Porter, L. M. Investigation of different metals as ohmic contacts to β-Ga2O3: Comparison and analysis of electrical behavior, morphology, and other physical properties. J. Electron. Mater. 2017, 46, 2053-2060.

23

Ma, Y. Q.; Shen, C. F.; Zhang, A. Y.; Chen, L.; Liu, Y. H.; Chen, J. H.; Liu, Q. Z.; Li, Z.; Amer, M. R.; Nilges, T. et al. Black phosphorus field-effect transistors with work function tunable contacts. ACS Nano 2017, 11, 7126-7133.

24

Mann, D.; Javey, A.; Kong, J.; Wang, Q.; Dai, H. J. Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett. 2003, 3, 1541-1544.

25

Ma, Y. Q.; Liu, B. L.; Zhang, A. Y.; Chen, L.; Fathi, M.; Shen, C. F.; Abbas, A. N.; Ge, M. Y.; Mecklenburg, M.; Zhou, C. W. Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices. ACS Nano 2015, 9, 7383-7391.

26

English, C. D.; Shine, G.; Dorgan, V. E.; Saraswat, K. C.; Pop, E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 2016, 16, 3824-3830.

27

Brillson, L. J. Chemical reaction and charge redistribution at metal- semiconductor interfaces. J. Vac. Sci. Technol. 1978, 15, 1378-1383.

28

Guo, Y. F.; Zhou, J. Y.; Liu, Y. J.; Zhou, X.; Yao, F. R.; Tan, C. W.; Wu, J. X.; Lin, L.; Liu, K. H.; Liu, Z. F. et al. Chemical intercalation of topological insulator grid nanostructures for high-performance transparent electrodes. Adv. Mater. 2017, 29, 1703424.

29

Mosbacker, H. L.; Strzhemechny, Y. M.; White, B. D.; Smith, P. E.; Look, D. C.; Reynolds, D. C.; Litton, C. W.; Brillson, L. J. Role of near-surface states in Ohmic-Schottky conversion of Au contacts to ZnO. Appl. Phys. Lett. 2005, 87, 012102.

30

Sawa, A. Resistive switching in transition metal oxides. Mater. Today 2008, 11, 28-36.

31

Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 2012, 24, 2945-2986.

32

Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv. Mater. 2009, 21, 2632-2663.

33

Yang, J. J.; Strachan, J. P.; Xia, Q. F.; Ohlberg, D. A. A.; Kuekes, P. J.; Kelley, R. D.; Stickle, W. F.; Stewart, D. R.; Medeiros-Ribeiro, G.; Williams, R. S. Diffusion of adhesion layer metals controls nanoscale memristive switching. Adv. Mater. 2010, 22, 4034-4038.

34

Yang, J. J.; Pickett, M. D.; Li, X. M.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429-433.

35

Gao, X.; Xia, Y. D.; Ji, J. F.; Xu, H. N.; Su, Y.; Li, H. T.; Yang, C. J.; Guo, H. X.; Yin, J.; Liu, Z. G. Effect of top electrode materials on bipolar resistive switching behavior of gallium oxide films. Appl. Phys. Lett. 2010, 97, 193501.

36

Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654-657.

37

Liu, B. L.; Ma, Y. Q.; Zhang, A. Y.; Chen, L.; Abbas, A. N.; Liu, Y. H.; Shen, C. F.; Wan, H. C.; Zhou, C. W. High-performance WSe2 field-effect transistors via controlled formation of in-plane heterojunctions. ACS Nano 2016, 10, 5153-5160.

38

Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2012, 12, 207-211.

39

Wood, J. D.; Wells, S. A.; Jariwala, D.; Chen, K. S.; Cho, E.; Sangwan, V. K.; Liu, X. L.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 2014, 14, 6964-6970.

40

Desai, S. B.; Seol, G.; Kang, J. S.; Fang, H.; Battaglia, C.; Kapadia, R.; Ager, J. W.; Guo, J.; Javey, A. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 2014, 14, 4592-4597.

41

Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696-700.

42

Waldner, P.; Eriksson, G. Thermodynamic modelling of the system titanium-oxygen. Calphad 1999, 23, 189-218.

43

Yang, J. J.; Strachan, J. P.; Miao, F.; Zhang, M. X.; Pickett, M. D.; Yi, W.; Ohlberg, D. A. A.; Medeiros-Ribeiro, G.; Williams, R. S. Metal/TiO2 interfaces for memristive switches. Appl. Phys. A 2011, 102, 785-789.

44

Lei, B.; Li, C.; Zhang, D.; Tang, T.; Zhou, C. Tuning electronic properties of In2O3 nanowires by doping control. Appl. Phys. A 2004, 79, 439-442.

45

Liu, Q. Z.; Liu, Y. H.; Wu, F. Q.; Cao, X.; Li, Z.; Alharbi, M.; Abbas, A. N.; Amer, M. R.; Zhou, C. W. Highly sensitive and wearable In2O3 nanoribbon transistor biosensors with integrated on-chip gate for glucose monitoring in body fluids. ACS Nano 2018, 12, 1170-1178.

46

Hollinger, G.; Skheyta-Kabbani, R.; Gendry, M. Oxides on GaAs and InAs surfaces: An X-ray-photoelectron-spectroscopy study of reference compounds and thin oxide layers. Phys. Rev. B 1994, 49, 11159-11167.

47

Dong, L. P.; Jia, R. X.; Xin, B.; Peng, B.; Zhang, Y. M. Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3. Sci. Rep. 2017, 7, 40160.

48

Varley, J. B.; Weber, J. R.; Janotti, A.; van de Walle, C. G. Oxygen vacancies and donor impurities in β-Ga2O3. Appl. Phys. Lett. 2010, 97, 142106.

49

Carey Ⅳ, P. H.; Yang, J. C.; Ren, F.; Hays, D. C.; Pearton, S. J.; Jang, S.; Kuramata, A.; Kravchenko, I. I. Ohmic contacts on n-type β-Ga2O3 using AZO/Ti/Au. AIP Adv. 2017, 7, 095313.

50

Carey Ⅳ, P. H.; Yang, J. C.; Ren, F.; Hays, D. C.; Pearton, S. J.; Kuramata, A.; Kravchenko, I. I. Improvement of Ohmic contacts on Ga2O3 through use of ITO-interlayers. J. Vac. Sci. Technol. B 2017, 35, 061201.

51

Qian, Y. P.; Guo, D. Y.; Chu, X. L.; Shi, H. Z.; Zhu, W. K.; Wang, K.; Huang, X. K.; Wang, H. et al. Mg-doped p-type β-Ga2O3 thin film for solar-blind ultraviolet photodetector. Mater. Lett. 2017, 209, 558-561.

52

Strachan, J. P.; Pickett, M. D.; Yang, J. J.; Aloni, S.; David, K. A. L.; Medeiros-Ribeiro, G.; Stanley Williams, R. Direct identification of the conducting channels in a functioning memristive device. Adv. Mater. 2010, 22, 3573-3577.

53

Zhao, Y. Y.; Frost, R. L. Raman spectroscopy and characterisation of α-gallium oxyhydroxide and β-gallium oxide nanorods. J. Raman Spectrosc. 2008, 39, 1494-1501.

54

Bourque, J. L.; Biesinger, M. C.; Baines, K. M. Chemical state determination of molecular gallium compounds using XPS. Dalton Trans. 2016, 45, 7678-7696.

55

Naumkin, A. V.; Kraut-Vass, A.; Gaarenstroom, S. W.; Powell, C. J. NIST X-ray photoelectron spectroscopy database, NIST standard reference database 20, version 4.1; Gaithersburg MD: National Institute of Standards and Technology, 2000.

File
12274_2018_2193_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 June 2018
Revised: 31 August 2018
Accepted: 05 September 2018
Published: 22 September 2018
Issue date: January 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

We would like to acknowledge the collaboration of this research with King Abdul-Aziz City for Science and Technology (KACST) via The Center of Excellence for Nanotechnologies (CEGN). A portion of the images and data used in this article were acquired at The Center for Electron Microscopy and Microanalysis, University of Southern California.

Return