Journal Home > Volume 12 , Issue 1

A co-precipitation method based on supersaturated recrystallization in a continuous stirred-tank reactor (CSTR) system was applied to uncover the growth mechanism of CsPbBr3 perovskite nanocrystals (NCs). The reaction rate can be controlled by changing the reaction conditions in this CSTR system, which helps us to observe important intermediate stages to gain insight into the growth mechanism of these NCs. The effects of the temperature, concentrations of the ligands (oleylamine and oleic acid), and precursor concentrations during the growth process of CsPbBr3 NCs were discussed in detail. Further, the growth mechanism of CsPbBr3 NCs was investigated in terms of the dynamics and thermodynamics on the basis of experimental results. The growth mechanism is a useful guide to large-scale synthesis. The synthesized CsPbBr3 NCs were employed for fabrication of both white light-emitting diodes and quantum-dot light-emitting diodes to test their photoelectric properties; the results show that CsPbBr3 NCs show great promise for optoelectronics applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Growth mechanism of CsPbBr3 perovskite nanocrystals by a co-precipitation method in a CSTR system

Show Author's information Jibin ZhangLianwei FanJunli LiXiangfu LiuRongwen WangLei WangGuoli Tu( )
Wuhan National Laboratory for Optoelectronics,Huazhong University of Science and Technology,Wuhan,430074,China;

Abstract

A co-precipitation method based on supersaturated recrystallization in a continuous stirred-tank reactor (CSTR) system was applied to uncover the growth mechanism of CsPbBr3 perovskite nanocrystals (NCs). The reaction rate can be controlled by changing the reaction conditions in this CSTR system, which helps us to observe important intermediate stages to gain insight into the growth mechanism of these NCs. The effects of the temperature, concentrations of the ligands (oleylamine and oleic acid), and precursor concentrations during the growth process of CsPbBr3 NCs were discussed in detail. Further, the growth mechanism of CsPbBr3 NCs was investigated in terms of the dynamics and thermodynamics on the basis of experimental results. The growth mechanism is a useful guide to large-scale synthesis. The synthesized CsPbBr3 NCs were employed for fabrication of both white light-emitting diodes and quantum-dot light-emitting diodes to test their photoelectric properties; the results show that CsPbBr3 NCs show great promise for optoelectronics applications.

Keywords: perovskite, growth mechanism, CsPbBr3 nanocrystals, continuous stirred-tank reactor (CSTR) system

References(27)

1

Lu, C.; Li, H.; Kolodziejski, K.; Dun, C.; Huang, W. X.; Carroll, D.; Geyer, S. M. Enhanced stabilization of inorganic cesium lead triiodide (CsPbI3) perovskite quantum dots with tri-octylphosphine. Nano Res. 2018, 11, 762-768.

2

Tang, X. S.; Hu, Z. P.; Chen, W. W.; Xing, X.; Zang, Z. G.; Hu, W.; Qiu, J.; Du, J.; Leng, Y. X.; Jiang, X. F. et al. Room temperature single-photon emission and lasing for all-inorganic colloidal perovskite quantum dots. Nano Energy 2016, 28, 462-468.

3

Swarnkar, A.; Ravi, V. K.; Nag, A. Beyond colloidal cesium lead halide perovskite nanocrystals: Analogous metal halides and doping. ACS Energy Lett. 2017, 2, 1089-1098.

4

Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Mínguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Pérez- Prieto, J. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 2014, 136, 850-853.

5

Gonzalez-Carrero, S.; Francés-Soriano, L.; González-Béjar, M.; Agouram, S.; Galian, R. E.; Pérez-Prieto, J. The luminescence of CH3NH3PbBr3 perovskite nanoparticles crests the summit and their photostability under wet conditions is enhanced. Small 2016, 12, 5245-5250.

6

Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635-5640.

7

Shi, Z. F.; Li, Y.; Zhang, Y. T.; Chen, Y. S.; Li, X. J.; Wu, D.; Xu, T. T.; Shan, C. X.; Du, G. T. High-efficiency and air-stable perovskite quantum dots light-emitting diodes with an all-inorganic heterostructure. Nano Lett. 2017, 17, 313-321.

8

Cai, Z. X.; Li, F. M.; Xu, W.; Xia, S. J.; Zeng, J. B.; He, S. G.; Chen, X. Colloidal CsPbBr3 perovskite nanocrystal films as electrochemiluminescence emitters in aqueous solutions. Nano Res. 2018, 11, 1447-1455.

9

Li, X. M.; Cao, F.; Yu, D. J.; Chen, J.; Sun, Z. G.; Shen, Y. L.; Zhu, Y.; Wang, L.; Wei, Y.; Wu, Y. et al. All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications. Small 2017, 13, 1603996.

10

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692-3696.

11

Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435-2445.

12

Almeida, G.; Goldoni, L.; Akkerman, Q.; Dang, Z. Y.; Khan, A. H.; Marras, S.; Moreels, I.; Manna, L. Role of acid-base equilibria in the size, shape, and phase control of cesium lead bromide nanocrystals. ACS Nano 2018, 12, 1704-1711.

13

Sun, S. B.; Yuan, D.; Xu, Y.; Wang, A. F.; Deng, Z. T. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 2016, 10, 3648-3657.

14

Koolyk, M.; Amgar, D.; Aharon, S.; Etgar, L. Kinetics of cesium lead halide perovskite nanoparticle growth; focusing and de-focusing of size distribution. Nanoscale 2016, 8, 6403-6409.

15

Cottingham, P.; Brutchey, R. L. On the crystal structure of colloidally prepared CsPbBr3 quantum dots. Chem. Commun. 2016, 52, 5246-5249.

16

Pan, A. Z.; He, B.; Fan, X. Y.; Liu, Z. K.; Urban, J. J.; Alivisatos, A. P.; He, L.; Liu, Y. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: The role of organic acid, base, and cesium precursors. ACS Nano 2016, 10, 7943-7954.

17

Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533-4542.

18

Wang, F. D.; Richards, V. N.; Shields, S. P.; Buhro, W. E. Kinetics and mechanisms of aggregative nanocrystal growth. Chem. Mater. 2014, 26, 5-21.

19

Huang, H.; Raith, J.; Kershaw, S. V.; Kalytchuk, S.; Tomanec, O.; Jing, L. H.; Susha, A. S.; Zboril, R.; Rogach, A. L. Growth mechanism of strongly emitting CH3NH3PbBr3 perovskite nanocrystals with a tunable bandgap. Nat. Commun. 2017, 8, 996.

20

ten Brinck, S.; Infante, I. Surface termination, morphology, and bright photoluminescence of cesium lead halide perovskite nanocrystals. ACS Energy Lett. 2016, 1, 1266-1272.

21

Li, J. L.; Yao, R. M.; Cao, C. B. LiNi1/3Co1/3Mn1/3O2 nanoplates with {010} active planes exposing prepared in polyol medium as a high-performance cathode for Li-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 5075-5082.

22

Li, Y. X.; Huang, H.; Xiong, Y.; Kershaw, S. V.; Rogach, A. L. Revealing the formation mechanism of CsPbBr3 perovskite nanocrystals produced via a slowed-down microwave-assisted synthesis. Angew. Chem., Int. Ed. 2018, 57, 5833-5837.

23

Ravi, V. K.; Santra, P. K.; Joshi, N.; Chugh, J.; Singh, S. K.; Rensmo, H.; Ghosh, P.; Nag, A. Origin of the substitution mechanism for the binding of organic ligands on the surface of CsPbBr3 perovskite nanocubes. J. Phys. Chem. Lett. 2017, 8, 4988-4994.

24

Zou, S. H.; Liu, Y. S.; Li, J. H.; Liu, C. P.; Feng, R.; Jiang, F. L.; Li, Y. X.; Song, J. Z.; Zeng, H. B.; Hong, M. C. et al. Stabilizing cesium lead halide perovskite lattice through Mn(Ⅱ) substitution for air-stable light-emitting diodes. J. Am. Chem. Soc. 2017, 139, 11443-11450.

25

Loiudice, A.; Saris, S.; Oveisi, E.; Alexander, D. T. L.; Buonsanti, R. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angew. Chem., Int. Ed. 2017, 56, 10696-10701.

26

Fan, L. W.; Ding, K.; Chen, H. T.; Xiang, S. P.; Zhang, R.; Guo, R. D.; Liu, Z. T.; Wang, L. Efficient pure green light-emitting diodes based on formamidinium lead bromide perovskite nanocrystals. Org. Electron. 2018, 60, 64-70.

27

Zhang, X. Y.; Bai, X.; Wu, H.; Zhang, X. T.; Sun, C.; Zhang, Y.; Zhang, W.; Zheng, W. T.; Yu, W. W.; Rogach, A. L. Water-assisted size and shape control of CsPbBr3 perovskite nanocrystals. Angew. Chem., Int. Ed. 2018, 130, 3395-3400.

File
12274_2018_2190_MOESM1_ESM.pdf (5.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 June 2018
Revised: 31 August 2018
Accepted: 01 September 2018
Published: 20 September 2018
Issue date: January 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

The authors thank the National Natural Science Foundation of China (Nos. 21574049 and 61564003). The authors also thank the Analytical and Testing Center of Huazhong University of Science and Technology (HUST).

Return