Journal Home > Volume 12 , Issue 1

Dimensionality and orientation of hexagonal boron nitride (h-BN) nanosheets are promising to create and control their unique properties for diverse applications. However, low-temperature deposition of vertically oriented h-BN nanosheets is a significant challenge. Here we report on the low-temperature plasma synthesis of maze-like h-BN nanowalls (BNNWs) from a mixture of triethylamine borane (TEAB) and ammonia at temperatures as low as 400 ℃. The maze-like BNNWs contained vertically aligned stacks of h-BN nanosheets. Wavy h-BN nanowalls with randomly oriented nanocrystalline structure are also fabricated. Simple and effective control of morphological type of BNNWs by the deposition temperature is demonstrated. Despite the lower synthesis temperature, thermal stability and oxidation resistivity of the maze-like BNNWs are higher than for the wavy nanowalls. The structure and oxidation of the nanowalls was found to be the critical factor for their thermal stability and controlled luminescence properties. Cytotoxic study demonstrated significant antibacterial effect of both maze-like and wavy h-BN nanowalls against E. coli. The reported results reveal a significant potential of h-BN nanowalls for a broad range of applications from electronics to biomedicine.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Orientation-controlled, low-temperature plasma growth and applications of h-BN nanosheets

Show Author's information Ivan Sergeevich Merenkov1,2( )Mikhail Sergeevich Myshenkov3Yuri Mikhailovich Zhukov3Yohei Sato4Tatyana Sergeevna Frolova5,6,7Denis Vasilevich Danilov3Igor Alekseevich Kasatkin3Oleg Sergeevich Medvedev3Roman Vladimirovich Pushkarev1Olga Ivanovna Sinitsyna5,7Masami Terauchi4Irina Alekseevna Zvereva3Marina Leonidovna Kosinova1Ken Ostrikov8,9
Nikolaev Institute of Inorganic Chemistry SB RAS,Novosibirsk,630090,Russia;
Ural Federal University,Ekaterinburg,620002,Russia;
Saint-Petersburg State University,St. Petersburg,199034,Russia;
IMRAM,Tohoku University,Sendai,980-8577,Japan;
Institute of Cytology and Genetics SB RAS,Novosibirsk,630090,Russia;
Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS,Novosibirsk,630090,Russia;
Novosibirsk State University,Novosibirsk,630090,Russia;
School of Physics,Chemistry and Mechanical Engineering,Queensland University of Technology,Brisbane QLD,4000,Australia;
CSIRO-QUT Joint Sustainable Processes and Devices Laboratory,P.O. Box 218,Lindfield NSW,2070,Australia;

Abstract

Dimensionality and orientation of hexagonal boron nitride (h-BN) nanosheets are promising to create and control their unique properties for diverse applications. However, low-temperature deposition of vertically oriented h-BN nanosheets is a significant challenge. Here we report on the low-temperature plasma synthesis of maze-like h-BN nanowalls (BNNWs) from a mixture of triethylamine borane (TEAB) and ammonia at temperatures as low as 400 ℃. The maze-like BNNWs contained vertically aligned stacks of h-BN nanosheets. Wavy h-BN nanowalls with randomly oriented nanocrystalline structure are also fabricated. Simple and effective control of morphological type of BNNWs by the deposition temperature is demonstrated. Despite the lower synthesis temperature, thermal stability and oxidation resistivity of the maze-like BNNWs are higher than for the wavy nanowalls. The structure and oxidation of the nanowalls was found to be the critical factor for their thermal stability and controlled luminescence properties. Cytotoxic study demonstrated significant antibacterial effect of both maze-like and wavy h-BN nanowalls against E. coli. The reported results reveal a significant potential of h-BN nanowalls for a broad range of applications from electronics to biomedicine.

Keywords: chemical vapor deposition, thermal stability, boron nitride nanosheets, nanowalls, cytotoxicity, light emission

References(75)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

2

Pakdel, A.; Bando, Y.; Golberg, D. Nano boron nitride flatland. Chem. Soc. Rev. 2014, 43, 934-959.

3

Falin, A.; Cai, Q.; Santos, E. J. G.; Scullion, D.; Qian, D.; Zhang, R.; Yang, Z.; Huang, S. M.; Watanabe, K.; Taniguchi, T. et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun. 2017, 8, 15815.

4

Li, L. H.; Cervenka, J.; Watanabe, K.; Taniguchi, T.; Chen, Y. Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 2014, 8, 1457-1462.

5

Haubner, R.; Wilhelm, M.; Weissenbacher, R.; Lux, B. Boron nitrides- Properties, synthesis and applications. In High Performance Non-Oxide Ceramics. Ⅱ. Structure and Bonding; Jansen, M., Ed.; Springer: Berlin, Heidelberg, Germany, 2002; pp 1-45.

6

Li, L. H.; Chen, Y.; Cheng, B. -M.; Lin, M. -Y.; Chou, S. -L.; Peng, Y. -C. Photoluminescence of boron nitride nanosheets exfoliated by ball milling. Appl. Phys. Lett. 2012, 100, 261108.

7

Weng, Q. H.; Wang, X. B.; Wang, X.; Bando, Y.; Golberg, D. Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications. Chem. Soc. Rev. 2016, 45, 3989-4012.

8

Mateti, S.; Wong, C. S.; Liu, Z.; Yang, W. R.; Li, Y. C.; Li, L. H.; Chen, Y. Biocompatibility of boron nitride nanosheets. Nano Res. 2018, 11, 334-342.

9

Sun, M. M.; Dong, J. C.; Lv, Y.; Zhao, S. Q.; Meng, C. X.; Song, Y. J.; Wang, G. X.; Li, J. F.; Fu, Q.; Tian, Z. Q. et al. Pt@h-BN core-shell fuel cell electrocatalysts with electrocatalysis confined under outer shells. Nano Res. 2018, 11, 3490-3498.

10

Sun, M. M.; Fu, Q.; Gao, L. J.; Zheng, Y. P.; Li, Y. Y.; Chen, M. S.; Bao, X. H. Catalysis under shell: Improved CO oxidation reaction confined in Pt@h-BN core-shell nanoreactors. Nano Res. 2017, 10, 1403-1412.

11

Li, L.; Li, L. H.; Ramakrishnan, S.; Dai, X. J.; Nicholas, K.; Chen, Y.; Chen, Z. Q.; Liu, X. W. Controlling wettability of boron nitride nanotube films and improved cell proliferation. J. Phys. Chem. C 2012, 116, 18334-18339.

12

Cai, Q. R.; Mateti, S.; Watanabe, K.; Taniguchi, T.; Huang, S. M.; Chen, Y.; Li, L. H. Boron nitride nanosheet-veiled gold nanoparticles for surface- enhanced Raman scattering. ACS Appl. Mater. Interfaces 2016, 8, 15630- 15636.

13

Cai, Q. R.; Mateti, S.; Yang, W. R.; Jones, R.; Watanabe, K.; Taniguchi, T.; Huang, S. M.; Chen, Y.; Li, L. H. Boron nitride nanosheets improve sensitivity and reusability of surface-enhanced Raman spectroscopy. Angew. Chem., Int. Ed. 2016, 55, 8405-8409.

14

Wu, Y. H.; Shen, Z. X.; Yu, T. Two-Dimensional Carbon: Fundamental Properties, Synthesis, Characterization, and Applications; CRC Press: Boca Raton, FL, USA, 2014.

15

Yu, K. H.; Wang, P. X.; Lu, G. H.; Chen, K. -H.; Bo, Z.; Chen, J. H. Patterning vertically oriented graphene sheets for nanodevice applications. J. Phys. Chem. Lett. 2011, 2, 537-542.

16

Mao, S.; Yu, K. H.; Chang, J. B.; Steeber, D. A.; Ocola, L. E.; Chen, J. H. Direct growth of vertically-oriented graphene for field-effect transistor biosensor. Sci. Rep. 2013, 3, 1696.

17

Ren, G. F.; Pan, X.; Bayne, S.; Fan, Z. Y. Kilohertz ultrafast electrochemical supercapacitors based on perpendicularly-oriented graphene grown inside of nickel foam. Carbon 2014, 71, 94-101.

18

Seo, D. H.; Han, Z. J.; Kumar, S.; Ostrikov, K. K. Structure-controlled, vertical graphene-based, binder-free electrodes from plasma-reformed butter enhance supercapacitor performance. Adv. Energy Mater. 2013, 3, 1316-1323.

19

Malesevic, A.; Kemps, R.; Vanhulsel, A.; Chowdhury, M. P.; Volodin, A.; Van Haesendonck, C. Field emission from vertically aligned few-layer graphene. J. Appl. Phys. 2008, 104, 084301.

20

Wu, Y. H.; Yang, B. J.; Zong, B. Y.; Sun, H.; Shen, Z. X.; Feng, Y. P. Carbon nanowalls and related materials. J. Mater. Chem. 2004, 14, 469-477.

21

Yu, J.; Qin, L.; Hao, Y. F.; Kuang, S. Y.; Bai, X. D.; Chong, Y. -M.; Zhang, W. J.; Wang, E. G. Vertically aligned boron nitride nanosheets: Chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity. ACS Nano 2010, 4, 414-22.

22

Zhang, C.; Hao, X. P.; Wu, Y. Z.; Du, M. Synthesis of vertically aligned boron nitride nanosheets using CVD method. Mater. Res. Bull. 2012, 47, 2277-2281.

23

Pakdel, A.; Zhi, C. Y.; Bando, Y.; Nakayama, T.; Golberg, D. Boron nitride nanosheet coatings with controllable water repellency. ACS Nano 2011, 5, 6507-6515.

24

Kesler, V. G.; Kosinova, M. L.; Rumyantsev, Y. M.; Sulyaeva, V. S. X-ray photoelectron and Auger spectroscopic study of the chemical composition of BCxNy films. J. Struct. Chem. 2012, 53, 699-707.

25

Levy, R. A.; Mastromatteo, E.; Grow, J. M.; Paturi, V.; Kuo, W. P.; Boeglin, H. J.; Shalvoy, R. Low pressure chemical vapor deposition of B-N-C-H films from triethylamine borane complex. J. Mater. Res. 1995, 10, 320-327.

26

Choy, K. L. Chemical vapour deposition of coatings. Prog. Mater. Sci. 2003, 48, 57-170.

27

Meyyappan, M.; Delzeit, L.; Cassell, A.; Hash, D. Carbon nanotube growth by PECVD: A review. Plasma Sources Sci. Technol. 2003, 12, 205-216.

28

Merenkov, I. S.; Kosinova, M. L.; Ermakova, E. N.; Maksimovskii, E. A.; Rumyantsev, Y. M. PECVD synthesis of hexagonal boron nitride nanowalls from a borazine + ammonia mixture. Inorg. Mater. 2015, 51, 1097-1103.

29

Boo, J. H.; Rohr, C.; Ho, W. Growth of boron nitride thin films on silicon substrates using new organoboron precursors. Phys. Stat. Sol. (A) 1999, 176, 705-710.

DOI
30

Ciofani, G.; Del Turco, S.; Rocca, A.; de Vito, G.; Cappello, V.; Yamaguchi, M.; Li, X.; Mazzolai, B.; Basta, G.; Gemmi, M. et al. Cytocompatibility evaluation of gum Arabic-coated ultra-pure boron nitride nanotubes on human cells. Nanomedicine 2014, 9, 773-788.

31

Merenkov, I. S.; Kasatkin, I. A.; Maksimovskii, E. A.; Alferova, N. I.; Kosinova, M. L. Vertically aligned layers of hexagonal boron nitride: PECVD synthesis from triethylaminoborane and structural features. J. Struct. Chem. 2017, 58, 1018-1024.

32

Sato, Y.; Terauchi, M.; Mukai, M.; Kaneyama, T.; Adachi, K. High energy-resolution electron energy-loss spectroscopy study of the dielectric properties of bulk and nanoparticle LaB6 in the near-infrared region. Ultramicroscopy 2011, 111, 1381-1387.

33

BenMoussa, B.; D'Haen, J.; Borschel, C.; Barjon, J.; Soltani, A.; Mortet, V.; Ronning, C.; D'Olieslaeger, M.; Boyen, H. -G.; Haenen, K. Hexagonal boron nitride nanowalls: Physical vapour deposition, 2D/3D morphology and spectroscopic analysis. J. Phys. D: Appl. Phys. 2012, 45, 135302.

34

Yang, C. Y.; Bi, H.; Wan, D. Y.; Huang, F. Q.; Xie, X. M.; Jiang, M. H. Direct PECVD growth of vertically erected graphene walls on dielectric substrates as excellent multifunctional electrodes. J. Mater. Chem. A 2013, 1, 770-775.

35

Hiramatsu, M.; Hori, M. Fabrication of carbon nanowalls using novel plasma processing. Jpn. J. Appl. Phys. 2006, 45, 5522-5527.

36

Xu, S.; Ma, X.; Su, M. Investigation of BCN films deposited at various hboxN2/hboxAr flow ratios by DC reactive magnetron sputtering. IEEE Trans. Plasma Sci. 2006, 34, 1199-1203.

37

Jeon, J. -K.; Uchimaru, Y.; Kim, D. -P. Synthesis of novel amorphous boron carbonitride ceramics from the borazine derivative copolymer via hydroboration. Inorg. Chem. 2004, 43, 4796-4798.

38

Gouin, X.; Grange, P.; Bois, L.; L'Haridon, P.; Laurent, Y. Characterization of the nitridation process of boric acid. J. Alloys Compd. 1995, 224, 22-28.

39

Il'inchik, E. A.; Merenkov, I. S. X-ray photoelectron study of the effect of the composition of the initial gas phase on changes in the electronic structure of hexagonal boron nitride films obtained by PECVD from borazine. J. Struct. Chem. 2016, 57, 670-678.

40

Liu, L. H.; Wang, Y. X.; Feng, K. C.; Li, Y. G.; Li, W. Q.; Zhao, C. H.; Zhao, Y. N. Preparation of boron carbon nitride thin films by radio frequency magnetron sputtering. Appl. Surf. Sci. 2006, 252, 4185-4189.

41

Dinescu, M.; Perrone, A.; Caricato, A. P.; Mirenghi, L.; Gerardi, C.; Ghica, C.; Frunza, L. Boron carbon nitride films deposited by sequential pulses laser deposition. Appl. Surf. Sci. 1998, 127-129, 692-696.

42

Wada, Y.; Yap, Y. K.; Yoshimura, M.; Mori, Y.; Sasaki, T. The control of B-N and B-C bonds in BCN films synthesized using pulsed laser deposition. Diam. Relat. Mater. 2000, 9, 620-624.

43

Zhou, F.; Adachi, K.; Kato, K. Friction and wear behavior of BCN coatings sliding against ceramic and steel balls in various environments. Wear 2006, 261, 301-310.

44

Lei, Y. -G.; Ng, K. -M.; Weng, L. -T.; Chan, C. -M.; Li, L. XPS C 1s binding energies for fluorocarbon-hydrocarbon microblock copolymers. Surf. Interface Anal. 2003, 35, 852-855.

45

Guimon, C.; Gonbeau, D.; Pfister-Guillouzo, G.; Dugne, O.; Guette, A.; Naslain, R.; Lahaye, M. XPS study of BN thin films deposited by CVD on SiC plane substrates. Surf. Interface Anal. 1990, 16, 440-445.

46

Linss, V.; Rodil, S. E.; Reinke, P.; Garnier, M. G.; Oelhafen, P.; Kreissig, U.; Richter, F. Bonding characteristics of DC magnetron sputtered B-C-N thin films investigated by Fourier-transformed infrared spectroscopy and X-ray photoelectron spectroscopy. Thin Solid Films 2004, 467, 76-87.

47

Künzli, H.; Gantenbein, P.; Steiner, R.; Oelhafen, P. Deposition and characterization of thin boron-carbide coatings. Fresenius J. Anal. Chem. 1993, 346, 41-44.

48

Huang, J. Y.; Yasuda, H.; Mori, H. HRTEM and EELS studies on the amorphization of hexagonal boron nitride induced by ball milling. J. Am. Ceram. Soc. 2000, 83, 403-409.

49

Jiménez, I.; Jankowski, A.; Terminello, L. J.; Carlisle, J. A.; Sutherland, D. G. J.; Doll, G. L.; Mantese, J. V.; Tong, W. M.; Shuh, D. K.; Himpsel, F. J. Near-edge X-ray absorption fine structure study of bonding modifications in BN thin films by ion implantation. Appl. Phys. Lett. 1996, 68, 2816-2818.

50

Ray, S. C.; Tsai, H. M.; Chiou, J. W.; Jan, J. C.; Kumar, K.; Pong, W. F.; Chien, F. Z.; Tsai, M. -H.; Chattopadhyay, S.; Chen, L. C. et al. X-ray absorption studies of boron-carbon-nitrogen (BxCyNz) ternary alloys. Diam. Relat. Mater. 2004, 13, 1553-1557.

51

Caretti, I.; Jiménez, I. Point defects in hexagonal BN, BC3 and BCxN compounds studied by X-ray absorption near-edge structure. J. Appl. Phys. 2011, 110, 023511.

52

Franke, R.; Bender, S.; Jüngermann, H.; Kroschel, M.; Jansen, M. The determination of structural units in amorphous Si-B-N-C ceramics by means of Si, B, N and C K-XANES spectroscopy. J. Electron Spectrosc. Relat. Phenom. 1999, 101-103, 641-645.

53

Stöhr, J. NEXAFS Spectroscopy; Springer: Berlin, Heidelberg, Germany, 1992.

54

Ray, S. C.; Tsai, H. M.; Bao, C. W.; Chiou, J. W.; Jan, J. C.; Kumar, K. P. K.; Pong, W. F.; Tsai, M. -H.; Chattopadhyay, S.; Chen, L. C. et al. Electronic and bonding structures of B-C-N thin films investigated by X-ray absorption and photoemission spectroscopy. J. Appl. Phys. 2004, 96, 208-211.

55

Ripalda, J. M.; Román, E.; Díaz, N.; Galán, L.; Montero, I.; Comelli, G.; Baraldi, A.; Lizzit, S.; Goldoni, A.; Paolucci, G. Correlation of X-ray absorption and X-ray photoemission spectroscopies in amorphous carbon nitride. Phys. Rev. B 1999, 60, R3705-R3708.

56

Bhattacharyya, S.; Lübbe, M.; Richter, F. Near edge X-ray absorption fine structure of thermally annealed amorphous nitrogenated carbon films. J. Appl. Phys. 2000, 88, 5043-5049.

57

Pease, R. S. An X-ray study of boron nitride. Acta Cryst. 1952, 5, 356-361.

58

Powder Diffraction Files (PDF) № 34-421. Powder Diffr. Files № 34-421.

59

Hoang, D. -Q.; Pobedinskas, P.; Nicley, S. S.; Turner, S.; Janssens, S. D.; Van Bael, M. K.; D'Haen, J.; Haenen, K. Elucidation of the growth mechanism of sputtered 2D hexagonal boron nitride nanowalls. Cryst. Growth Des. 2016, 16, 3699-3708.

60

Merenkov, I. S.; Kasatkin, I. A.; Kosinova, M. L. X-ray diffraction study of vertically aligned layers of h-BN, obtained by PECVD from borazine and ammonia or helium mixtures. J. Struct. Chem. 2015, 56, 1173-1175.

61

Merenkov, I. S.; Kosinova, M. L.; Maximovskii, E. A. Boron nitride nanowalls: Low-temperature plasma-enhanced chemical vapor deposition synthesis and optical properties. Nanotechnology 2017, 28, 185602.

62

Bo, Z.; Mao, S.; Jun Han, Z.; Cen, K. F.; Chen, J. H.; Ostrikov, K. Emerging energy and environmental applications of vertically-oriented graphenes. Chem. Soc. Rev. 2015, 44, 2108-2121.

63

Mironovich, K. V.; Itkis, D. M.; Semenenko, D. A.; Dagesian, S. A.; Yashina, L. V.; Kataev, E. Y.; Mankelevich, Y. A.; Suetin, N. V.; Krivchenko, V. A. Tailoring of the carbon nanowall microstructure by sharp variation of plasma radical composition. Phys. Chem. Chem. Phys. 2014, 16, 25621-25627.

64

Zhao, J.; Shaygan, M.; Eckert, J.; Meyyappan, M.; Rümmeli, M. H. A growth mechanism for free-standing vertical graphene. Nano Lett. 2014, 14, 3064-3071.

65

Cai, M. Z.; Outlaw, R. A.; Quinlan, R. A.; Premathilake, D.; Butler, S. M.; Miller, J. R. Fast response, vertically oriented graphene nanosheet electric double layer capacitors synthesized from C2H2. ACS Nano 2014, 8, 5873-5882.

66

Sankaran, K. J.; Hoang, D. Q.; Kunuku, S.; Korneychuk, S.; Turner, S.; Pobedinskas, P.; Drijkoningen, S.; Van Bael, M. K.; D'Haen, J.; Verbeeck, J. et al. Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures. Sci. Rep. 2016, 6, 29444.

67

Merenkov, I. S.; Burovihina, A. A.; Zhukov, Y. M.; Kasatkin, I. A.; Medvedev, O. S.; Zvereva, I. A.; Kosinova, M. L. Thermal stability of UV light emitting boron nitride nanowalls. Mater. Des. 2017, 117, 239-247.

68

Zhu, Y. -C.; Bando, Y.; Xue, D. -F.; Sekiguchi, T.; Golberg, D.; Xu, F. -F.; Liu, Q. -L. New boron nitride whiskers: Showing strong ultraviolet and visible light luminescence. J. Phys. Chem. B. 2004, 108, 6193-6196.

69

Han, W. Q.; Yu, H. G.; Zhi, C. Y.; Wang, J. B.; Liu, Z. X.; Sekiguchi, T.; Bando, Y. Isotope effect on band gap and radiative transitions properties of boron nitride nanotubes. Nano Lett. 2008, 8, 491-494.

70

Zhang, H. Z.; Phillips, M. R.; Fitz Gerald, J. D.; Yu, J.; Chen, Y. Patterned growth and cathodoluminescence of conical boron nitride nanorods. Appl. Phys. Lett. 2006, 88, 093117.

71

Genchi, G. G.; Ciofani, G. Bioapplications of boron nitride nanotubes. Nanomedicine 2015, 10, 3315-3319.

72

Rasel, M. A. I.; Li, T.; Nguyen, T. D.; Singh, S.; Zhou, Y. H.; Xiao, Y.; Gu, Y. T. Biophysical response of living cells to boron nitride nanoparticles: Uptake mechanism and bio-mechanical characterization. J. Nanopart. Res. 2015, 17, 441.

73

Soares, D. C. F.; Ferreira, T. H.; de Aguiar Ferreira, C.; Cardoso, V. N.; de Sousa, E. M. B. Boron nitride nanotubes radiolabeled with 99mTc: Preparation, physicochemical characterization, biodistribution study, and scintigraphic imaging in Swiss mice. Int. J. Pharm. 2012, 423, 489-495.

74

Ion, R.; Vizireanu, S.; Luculescu, C.; Cimpean, A.; Dinescu, G. Vertically, interconnected carbon nanowalls as biocompatible scaffolds for osteoblast cells. J. Phys. D: Appl. Phys. 2016, 49, 274004.

75

Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010, 4, 5731-5736.

File
12274_2018_2185_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 July 2018
Revised: 20 August 2018
Accepted: 20 August 2018
Published: 03 September 2018
Issue date: January 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

The reported research was funded by Russian Foundation for Basic Research and the government of the Novosibirsk region of the Russian Federation (No. 18-43-543003). The project was partially performed in the resource centers of Scientific Park of Saint-Petersburg State University, in particular, Center for X-ray Diffraction Studies, Thermogravimetric and Calorimetric Research Center, Center for Physical Methods of Surface Investigation and Nanotechnology Interdisciplinary Center. K. O. thanks the Australian Research Council for partial support, UrFU for the access to scientific equipment of Laboratory "Nanocrystal" supported by Act 211 Government of the RF (No. 02.A03.21.0006).

Return