Journal Home > Volume 12 , Issue 1

We present an optical and photoelectron spectroscopic study to elucidate the interfacial electronic properties of organic-inorganic semiconductor heterojunctions formed in a kinetically blocked heptazethrene triisopropylsilyl ethynylene (HZ-TIPS) and its homologue, octazethrene (OZ-TIPS) on an all-inorganic perovskite cesium lead bromide (CsPbBr3) surface. The photoluminescence behavior of the underlying perovskites upon differing molecular doping conditions was examined. It turns out that the charge transfer dynamics of thermally-evaporated OZ-TIPS molecule exhibited a faster average lifetime than that of the HZ-TIPS case suggesting the importance of the biradical state in the former molecule. An interfacial dipole was formed at the interface due to the competing interaction between the dispersion force of the bulky TIPS-substituent group and the attractive van der Waals interaction at the first few layers. Photoemission spectroscopy of the physisorbed HZ-TIPS shows chemical shifts, which indicates electron transfer from HZ-TIPS molecules to the CsPbBr3 perovskite single crystal. In contrast, the adsorbed OZ-TIPS molecular layer on CsPbBr3 demonstrates the opposite trend indicating a hole transfer process. The average molecular orientation as determined by near edge X-ray absorption fine structure (NEXAFS) suggests that the HZ-TIPS molecular plane is generally lifted with respect to the perovskite surface. We suggest that the nature of the closed-shell electronic ground state of HZ-TIPS could contribute to the formation of interfacial dipole at the molecule/perovskite interface.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Surface molecular doping of all-inorganic perovskite using zethrenes molecules

Show Author's information Arramel1( )Hu Pan2Aozhen Xie3,4,5Songyan Hou3,4Xinmao Yin1,6Chi Sin Tang1,6,7Nguyen T. Hoa3Muhammad D. Birowosuto3Hong Wang3,4Cuong Dang3,4,5( )Andrivo Rusydi1,6,8Andrew T. S. Wee1,9,10Jishan Wu2( )
Department of Physics,National University of Singapore,2 Science Drive 3,Singapore,117542,Singapore;
Department of Chemistry,National University of Singapore,3 Science Drive 3,Singapore,117543,Singapore;
CINTRA UMI CNRS/NTU/THALES 3288,Research Techno Plaza,50 Nanyang Drive, Level 6, Border X Block,Singapore,637553,singapore;
School of Electrical and Electronic Engineering,Nanyang Technological University,50 Nanyang Avenue,Singapore,639798,Singapore;
Energy Research Institute @NTU (ERI@N),Nanyang Technological University,Research Techno Plaza, X-Frontier Block, Level 5, 50 Nanyang Drive,Singapore,637553,Singapore;
Singapore Synchrotron Light Source,National University of Singapore,5 Research Link,Singapore,1176033,Singapore;
NUS Graduate School for Integrative Sciences and Engineering (NGS),National University of Singapore,Singapore,117456,Singapore;
NUSNNI-NanoCore,National University of Singapore,Singapore,117411,Singapore;
Institute of Materials Research & Engineering (IMRE),Agency for Science,Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis,Singapore,138634,Singapore;
Centre for Advanced 2D Materials,National University of Singapore,Block S14, Level 6, 6 Science Drive 2,Singapore,117546,Singapore

Abstract

We present an optical and photoelectron spectroscopic study to elucidate the interfacial electronic properties of organic-inorganic semiconductor heterojunctions formed in a kinetically blocked heptazethrene triisopropylsilyl ethynylene (HZ-TIPS) and its homologue, octazethrene (OZ-TIPS) on an all-inorganic perovskite cesium lead bromide (CsPbBr3) surface. The photoluminescence behavior of the underlying perovskites upon differing molecular doping conditions was examined. It turns out that the charge transfer dynamics of thermally-evaporated OZ-TIPS molecule exhibited a faster average lifetime than that of the HZ-TIPS case suggesting the importance of the biradical state in the former molecule. An interfacial dipole was formed at the interface due to the competing interaction between the dispersion force of the bulky TIPS-substituent group and the attractive van der Waals interaction at the first few layers. Photoemission spectroscopy of the physisorbed HZ-TIPS shows chemical shifts, which indicates electron transfer from HZ-TIPS molecules to the CsPbBr3 perovskite single crystal. In contrast, the adsorbed OZ-TIPS molecular layer on CsPbBr3 demonstrates the opposite trend indicating a hole transfer process. The average molecular orientation as determined by near edge X-ray absorption fine structure (NEXAFS) suggests that the HZ-TIPS molecular plane is generally lifted with respect to the perovskite surface. We suggest that the nature of the closed-shell electronic ground state of HZ-TIPS could contribute to the formation of interfacial dipole at the molecule/perovskite interface.

Keywords: perovskite, zethrene, photoelectron spectroscopy, near edge X-ray absorption fine structure and molecular doping

References(57)

1

Wang, Y.; Li, X. M.; Song, J. Z.; Xiao, L.; Zeng, H. B.; Sun, H. D. All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics. Adv. Mater. 2015, 27, 7101–7108.

2

Manser, J. S.; Christians, J. A.; Kamat, P. V. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 2016, 116, 12956–13008.

3

Brus, L. E. Electron–electron and electron–hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.

4

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

5

Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D. Cesium enhances long-term stability of lead bromide perovskite- based solar cells. J. Phys. Chem. Lett. 2016, 7, 167–172.

6

Choi, J. J.; Billinge, S. J. L. Perovskites at the nanoscale: From fundamentals to applications. Nanoscale 2016, 8, 6206–6208.

7

Yantara, N.; Bhaumik, S.; Yan, F.; Sabba, D.; Dewi, H. A.; Mathews, N.; Boix, P. P.; Demir, H. V.; Mhaisalkar, S. Inorganic halide perovskites for efficient light-emitting diodes. J. Phys. Chem. Lett. 2015, 6, 4360–4364.

8

Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

9

Huang, J. S.; Yuan, Y. B.; Shao, Y. C.; Yan, Y. F. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2017, 2, 17042.

10

Herz, L. M. Charge-carrier dynamics in organic-inorganic metal halide perovskites. Annu. Rev. Phys. Chem. 2016, 67, 65–89.

11

Nie, W. Y.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522–525.

12

Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.

13

Sun, Z.; Zeng, Z. B.; Wu, J. S. Zethrenes, extended p-quinodimethanes, and periacenes with a singlet biradical ground state. Acc. Chem. Res. 2014, 47, 2582–2591.

14

Kubo, T. Recent progress in quinoidal singlet biradical molecules. Chem. Lett. 2015, 44, 111–122.

15

Zeng, Z. B.; Shi, X. L.; Chi, C. Y.; López Navarrete, J. T.; Casado, J.; Wu, J. S. Pro-aromatic and anti-aromatic π-conjugated molecules: An irresistible wish to be diradicals. Chem. Soc. Rev. 2015, 44, 6578–6596.

16

Sun, Z.; Ye, Q.; Chi, C. Y.; Wu, J. S. Low band gap polycyclic hydrocarbons: From closed-shell near infrared dyes and semiconductors to open-shell radicals. Chem. Soc. Rev. 2012, 41, 7857–7889.

17

Das, S.; Wu, J. S. Polycyclic hydrocarbons with an open-shell ground state. Phys. Sci. Rev. 2017, 2, 109.

18

Li, Y.; Heng, W.-K.; Lee, B. S.; Aratani, N.; Zafra, J. L.; Bao, N.; Lee, R.; Sung, Y. M.; Sun, Z.; Huang, K.-W. et al. Kinetically blocked stable heptazethrene and octazethrene: Closed-shell or open-shell in the ground state? J. Am. Chem. Soc. 2012, 134, 14913–14922.

19

Fantacci, S.; De Angelis, F.; Nazeeruddin, M. K.; Grätzel, M. Electronic and optical properties of the spiro-MeOTAD hole conductor in its neutral and oxidized forms: A DFT/TDDFT investigation. J. Phys. Chem. C 2011, 115, 23126–23133.

20

Li, Y.; Li, H. Y.; Zhong, C.; Sini, G.; Brédas, J.-L. Characterization of intrinsic hole transport in single-crystal spiro-OMeTAD. npj Flex. Electron. 2017, 1, 2.

21

Kim, Y. H.; Sachse, C.; Machala, M. L.; May, C.; Müller-Meskamp, L.; Leo, K. Highly conductive PEDOT: PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv. Funct. Mater. 2011, 21, 1076–1081.

22

Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 2005, 4, 864–868.

23

Luo, P. F.; Xia, W.; Zhou, S. W.; Sun, L.; Cheng, J. G.; Xu, C. X.; Lu, Y. W. Solvent engineering for ambient-air-processed, phase-stable CsPbI3 in perovskite solar cells. J. Phys. Chem. Lett. 2016, 7, 3603–3608.

24

Huang, R.; Phan, H.; Herng, T. S.; Hu, P.; Zeng, W. D.; Dong, S.-Q.; Das, S.; Shen, Y. J.; Ding, J.; Casanova, D. et al. Higher order π-conjugated polycyclic hydrocarbons with open-shell singlet ground state: Nonazethrene versus nonacene. J. Am. Chem. Soc. 2016, 138, 10323–10330.

25

Hu, P.; Lee, S.; Park, K. H.; Das, S.; Herng, T. S.; Gonçalves, T. P.; Huang, K.-W.; Ding, J.; Kim, D.; Wu, J. S. Octazethrene and its isomer with different diradical characters and chemical reactivity: The role of the bridge structure. J. Org. Chem. 2016, 81, 2911–2919.

26

Chen, W.; Qi, D. C.; Gao, X. Y.; Wee, A. T. S. Surface transfer doping of semiconductors. Prog. Surf. Sci. 2009, 84, 279–321.

27

Begum, R.; Parida, M. R.; Abdelhady, A. L.; Murali, B.; Alyami, N. M.; Ahmed, G. H.; Hedhili, M. N.; Bakr, O. M.; Mohammed, O. F. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping. J. Am. Chem. Soc. 2017, 139, 731–737.

28

Wang, C. G.; Wang, C. C.; Liu, X. L.; Kauppi, J.; Shao, Y. C.; Xiao, Z. G.; Bi, C.; Huang, J. S.; Gao, Y. L. Electronic structure evolution of fullerene on CH3NH3PbI3. Appl. Phys. Lett. 2015, 106, 111603.

29

Thibau, E. S.; Llanos, A.; Lu, Z. H. A simple rule for determining the band offset at CH3NH3PbI3/organic semiconductor heterojunctions. Appl. Phys. Lett. 2016, 108, 021602.

30

Ji, G. W.; Zheng, G. H. J.; Zhao, B.; Song, F.; Zhang, X. N.; Shen, K. C.; Yang, Y. G.; Xiong, Y. M.; Gao, X. Y.; Cao, L. et al. Interfacial electronic structures revealed at the rubrene/CH3NH3PbI3 interface. Phys. Chem. Chem. Phys. 2017, 19, 6546–6553.

31

Endres, J.; Kulbak, M.; Zhao, L. F.; Rand, B. P.; Cahen, D.; Hodes, G.; Kahn, A. Electronic structure of the CsPbBr3/polytriarylamine (PTAA) system. J. Appl. Phys. 2017, 121, 035304.

32

Ravi, V. K.; Santra, P. K.; Joshi, N.; Chugh, J.; Singh, S. K.; Rensmo, H.; Ghosh, P.; Nag, A. Origin of the substitution mechanism for the binding of organic ligands on the surface of CsPbBr3 perovskite nanocubes. J. Phys. Chem. Lett. 2017, 8, 4988–4994.

33

Shan, L.; Liang, Z. X.; Xu, X. M.; Tang, Q.; Miao, Q. Revisiting zethrene: Synthesis, reactivity and semiconductor properties. Chem. Sci. 2013, 4, 3294–3297.

34

Honsho, Y.; Miyakai, T.; Sakurai, T.; Saeki, A.; Seki, S. Evaluation of intrinsic charge carrier transport at insulator-semiconductor interfaces probed by a non-contact microwave-based technique. Sci. Rep. 2013, 3, 3182.

35

Yamagishi, M.; Takeya, J.; Tominari, Y.; Nakazawa, Y.; Kuroda, T.; Ikehata, S.; Uno, M.; Nishikawa, T.; Kawase, T. High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators. Appl. Phys. Lett. 2007, 90, 182117.

36

Rakita, Y.; Kedem, N.; Gupta, S.; Sadhanala, A.; Kalchenko, V.; Böhm, M. L.; Kulbak, M.; Friend, R. H.; Cahen, D.; Hodes, G. Low-temperature solution-grown CsPbBr3 single crystals and their characterization. Cryst. Growth Des. 2016, 16, 5717–5725.

37

Yu, X. J.; Wilhelmi, O.; Moser, H. O.; Vidyaraj, S. V.; Gao, X. Y.; Wee, A. T. S.; Nyunt, T.; Qian, H. J.; Zheng, H. W. New soft X-ray facility SINS for surface and nanoscale science at SSLS. J. Electron Spectrosc. Relat. Phenom. 2005, 144–147, 1031–1034.

38

Stoumpos, C. C.; Malliakas, C. D.; Peters, J. A.; Liu, Z. F.; Sebastian, M.; Im, J.; Chasapis, T. C.; Wibowo, A. C.; Chung, D. Y.; Freeman, A. J. et al. Crystal growth of the perovskite semiconductor CsPbBr3: A new material for high-energy radiation detection. Cryst. Growth Des. 2013, 13, 2722–2727.

39

Swarnkar, A.; Chulliyil, R.; Ravi, V. K.; Irfanullah, M.; Chowdhury, A.; Nag, A. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots. Angew. Chem., Int. Ed. 2015, 54, 15424–15428.

40

Gnoli, A.; Ustunel, H.; Toffoli, D.; Yu, L. Y.; Catone, D.; Turchini, S.; Lizzit, S.; Stingelin, N.; Larciprete, R. Bis(triisopropylsilylethynyl)pentacene/Au(111) interface: Coupling, molecular orientation, and thermal stability. J. Phys. Chem. C 2014, 118, 22522–22532.

41

Ryno, S. M.; Risko, C.; Brédas, J.-L. Impact of molecular packing on electronic polarization in organic crystals: The case of pentacene vs. TIPS- pentacene. J. Am. Chem. Soc. 2014, 136, 6421–6427.

42

Saleem, U.; Permatasari, F. A.; Iskandar, F.; Ogi, T.; Okuyama, K.; Darma, Y.; Zhao, M.; Loh, K. P.; Rusydi, A.; Coquet, P., et al. Surface plasmon enhanced nitrogen-doped graphene quantum dot emission by single bismuth telluride nanoplates. Adv. Opt. Mater. 2017, 5, 1700176.

43

Cho, H.; Jeong, S.-H.; Park, M.-H.; Kim, Y.-H.; Wolf, C.; Lee, C.-L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222–1225.

44

Zhang, W.; Pathak, S.; Sakai, N.; Stergiopoulos, T.; Nayak, P. K.; Noel, N. K.; Haghighirad, A. A.; Burlakov, V. M.; deQuilettes, D. W.; Sadhanala, A. et al. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. Nat. Commun. 2015, 6, 10030.

45

Kang, J.; Wang, L.-W. High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 2017, 8, 489–493.

46

Helander, M. G.; Greiner, M. T.; Wang, Z. B.; Lu, Z. H. Effect of electrostatic screening on apparent shifts in photoemission spectra near metal/organic interfaces. Phys. Rev. B 2010, 81, 153308.

47

Chen, S.; Goh, T. W.; Sabba, D.; Chua, J.; Mathews, N.; Huan, C. H. A.; Sum, T. C. Energy level alignment at the methylammonium lead iodide/copper phthalocyanine interface. APL Mater. 2014, 2, 081512.

48

Rangger, G. M.; Hofmann, O. T.; Romaner, L.; Heimel, G.; Bröker, B.; Blum, R.-P.; Johnson, R. L.; Koch, N.; Zojer, E. F4TCNQ on Cu, Ag, and Au as prototypical example for a strong organic acceptor on coinage metals. Phys. Rev. B 2009, 79, 165306.

49

Braun, S.; Salaneck, W. R.; Fahlman, M. Energy-level alignment at organic/metal and organic/organic interfaces. Adv. Mater. 2009, 21, 1450–1472.

50

Wang, Q.-K.; Wang, R.-B.; Shen, P.-F.; Li, C.; Li, Y.-Q.; Liu, L.-J.; Duhm, S.; Tang, J.-X. Energy level offsets at lead halide perovskite/organic hybrid interfaces and their impacts on charge separation. Adv. Mater. Interfaces 2015, 2, 1400528.

51

Ishii, H.; Sugiyama, K.; Ito, E.; Seki, K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 1999, 11, 605–625.

DOI
52

Kera, S.; Yabuuchi, Y.; Yamane, H.; Setoyama, H.; Okudaira, K. K.; Kahn, A.; Ueno, N. Impact of an interface dipole layer on molecular level alignment at an organic-conductor interface studied by ultraviolet photoemission spectroscopy. Phys. Rev. B 2004, 70, 085304.

53
Stöhr, J. Nexafs Spectroscopy; Springer-Verlag: Berlin, Heidelberg, Germany, 1992.https://doi.org/10.1007/978-3-662-02853-7
DOI
54

Breuer, T.; Klues, M.; Witte, G. Characterization of orientational order in π-conjugated molecular thin films by NEXAFS. J. Electron Spectrosc. Relat. Phenom. 2015, 204, 102–115.

55
Qi, D.-C.; Chen, W.; Wee, A. T. S. NEXAFS studies of molecular orientations at molecule-substrate interfaces. In The Molecule–Metal Interface; Koch, N.; Ueno, N.; Wee, A. T. S., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA.: Germany, 2013; pp 119–151.https://doi.org/10.1002/9783527653171.ch5
DOI
56

Cao, L.; Wang, Y. Z.; Zhong, J. Q.; Han, Y. Y.; Zhang, W. H.; Yu, X. J.; Xu, F. Q.; Qi, D.-C.; Wee, A. T. S. Electronic structure, chemical interactions and molecular orientations of 3, 4, 9, 10-perylene-tetracarboxylic-dianhydride on TiO2(110). J. Phys. Chem. C 2011, 115, 24880–24887.

57

Park, S. K.; Jackson, T. N.; Anthony, J. E.; Mourey, D. A. High mobility solution processed 6, 13-bis(triisopropyl-silylethynyl) pentacene organic thin film transistors. Appl. Phys. Lett. 2007, 91, 063514.

File
12274_2018_2183_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 May 2018
Revised: 18 August 2018
Accepted: 20 August 2018
Published: 30 August 2018
Issue date: January 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

We acknowledge Wong How Kwong for the assistance during UPS measurements. Xiaojiang Yu is appreciated for his technical support in the Singapore Synchrotron Light Source (SSLS). We note synchrotron facility plays indispensable part in this work as a National Research Infrastructure under the National Research Foundation Singapore. This work is financially supported by several funding agencies. Thus, authors are acknowledged a research grant from MOE Tier 3 programme (No. MOE2014-T3-1-004). The work at SSLS is supported by Singapore National Research Foundation under its Competitive Research Funding (No. NRF-CRP 8-2011-06), MOE-AcRF Tier-2 (No. MOE2015-T2-1-099), FRC and PHC Merlion. NTU authors acknowledge the Ministry of Education funding (No. MOE2016-T2-1-052).

Return