AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Polyplex interaction strength as a driver of potency during cancer immunotherapy

Shannon J. Tsai1James I. Andorko1Xiangbin Zeng1Joshua M. Gammon1Christopher M. Jewell1,2,3,4,5( )
Fischell Department of BioengineeringUniversity of Maryland8278 Paint Branch DriveCollege ParkMD20742USA
Robert E. Fischell Institute for Biomedical DevicesUniversity of Maryland8278 Paint Branch DriveCollege ParkMD20742USA
United States Department of Veterans AffairsMaryland VA Health Care System10 North Greene StreetBaltimoreMD21201USA
Department of Microbiology and ImmunologyUniversity of Maryland Medical School685 West Baltimore StreetBaltimoreMD21201USA
Marlene and Stewart Greenebaum Cancer Center22 South Greene StreetBaltimoreMD21201USA
Show Author Information

Graphical Abstract

Abstract

Many experimental cancer vaccines are exploring toll-like receptor agonists (TLRas) such as CpG, a DNA motif that agonizes toll-like receptor 9 (TLR9), to trigger immune responses that are potent and molecularly-specific. The ability to tune the immune response is especially important in the immunosuppressive microenvironments of tumors. Because TLR9 is located intracellularly, CpG must be internalized by immune cells for functionality. Polyplexes can be self- assembled through electrostatics using DNA (anionic) condensed by a positively charged carrier. These structures improve cell delivery and have been widely explored for gene therapy. In contrast, here we use cationic poly (β-amino esters) (PBAEs) to assemble polyplexes from CpG as an adjuvant to target and improve immune stimulation in cells and mouse models. Polyplexes were formed over a range of PBAE: CpG ratios, resulting in a library of complexes with increasingly positive charge and stronger binding as PBAE: CpG ratio increased. Although higher PBAE: CpG ratios exhibited improved CpG uptake, lower ratios of PBAE: CpG—which condensed CpG more weakly, activated DCs and tumor- specific T cells more effectively. In a mouse melanoma model, polyplexes with lower binding affinities improved survival more effectively compared with higher binding affinities. These data demonstrate that altering the polyplex interaction strength impacts accessibility of CpG to TLRs in immune cells. Thus, physiochemical properties, particularly the interplay between charge, uptake, and affinity, play a key role in determining the nature and efficacy of the immune response generated. This insight identifies new design considerations that must be balanced for engineering effective immunotherapies and vaccines.

References

1

Reed, S. G.; Orr, M. T.; Fox, C. B. Key roles of adjuvants in modern vaccines. Nat. Med. 2013, 19, 1597-1608.

2

Gammon, J. M.; Dold, N. M.; Jewell, C. M. Improving the clinical impact of biomaterials in cancer immunotherapy. Oncotarget 2016, 7, 15421-15443.

3

Moyer, T. J.; Zmolek, A. C.; Irvine, D. J. Beyond antigens and adjuvants: Formulating future vaccines. J. Clin. Invest. 2016, 126, 799-808.

4

Gu, L.; Mooney, D. J. Biomaterials and emerging anticancer therapeutics: Engineering the microenvironment. Nat. Rev. Cancer 2016, 16, 56-66.

5

Drake, C. G.; Lipson, E. J.; Brahmer, J. R. Breathing new life into immunotherapy: Review of melanoma, lung and kidney cancer. Nat. Rev. Clin. Oncol. 2014, 11, 24-37.

6

Lynn, G. M.; Laga, R.; Darrah, P. A.; Ishizuka, A. S.; Balaci, A. J.; Dulcey, A. E.; Pechar, M.; Pola, R.; Gerner, M. Y.; Yamamoto, A. et al. In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat. Biotechnol. 2015, 33, 1201-1210.

7

Maisonneuve, C.; Bertholet, S.; Philpott, D. J.; De Gregorio, E. Unleashing the potential of NOD- and toll-like agonists as vaccine adjuvants. Proc. Natl. Acad. Sci. USA 2014, 111, 12294-12299.

8

O'Neill, L. A. J.; Golenbock, D.; Bowie, A. G. The history of Toll-like receptors—Redefining innate immunity. Nat. Rev. Immunol. 2013, 13, 453-460.

9

Karolinska, C.; Gaudernack, G.; Gerritsen, W.; Huber, C.; Parmiani, G.; Scholl, S.; Thatcher, N.; Wagstaff, J.; Zielinski, C.; Faulkner, I. et al. Therapeutic vaccines for cancer: An overview of clinical trials. Nat. Rev. Clin. Oncol. 2014, 11, 509-524.

10

Kuai, R.; Ochyl, L. J.; Bahjat, K. S.; Schwendeman, A.; Moon, J. J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 2017, 16, 489-496.

11

Leleux, J. A.; Pradhan, P.; Roy, K. Biophysical attributes of CpG presentation control TLR9 signaling to differentially polarize systemic immune responses. Cell Rep. 2017, 18, 700-710.

12

Chen, H. C.; Zhan, X.; Tran, K. K.; Shen, H. Selectively targeting the toll-like receptor 9 (TLR9)—IRF 7 signaling pathway by polymer blend particles. Biomaterials 2013, 34, 6464-6472.

13

Krieg, A. M. Development of TLR9 agonists for cancer therapy. J. Clin. Invest. 2007, 117, 1184-1194.

14

Blasius, A. L.; Beutler, B. Intracellular toll-like receptors. Immunity 2010, 32, 305-315.

15

Andorko, J. I.; Jewell, C. M. Designing biomaterials with immunomodulatory properties for tissue engineering and regenerative medicine. Bioeng. Transl. Med. 2017, 2, 139- 155.

16

Sahdev, P.; Ochyl, L. J.; Moon, J. J. Biomaterials for nanoparticle vaccine delivery systems. Pharm. Res. 2014, 31, 2563-2582.

17

Bookstaver, M. L.; Tsai, S. J.; Bromberg, J. S.; Jewell, C. M. Improving vaccine and immunotherapy design using biomaterials. Trends Immunol. 2018, 39, 135-150.

18

Bookstaver, M. L.; Hess, K. L.; Jewell, C. M. Self-assembly of immune signals improves co-delivery to antigen presenting cells and accelerates signal internalization, processing kinetics, and immune activation. Small, in press, DOI: 10.1002/smll.201802202.

19

Jia, X. Q.; Wan, L. Y.; Du, J. J. In situ polymerization on biomacromolecules for nanomedicines. Nano Res. 2018, 11, 5028-5048.

20

Tay, C. Y.; Yu, Y.; Setyawati, M. I.; Xie, J. P.; Leong, D. T. Presentation matters: Identity of gold nanocluster capping agent governs intracellular uptake and cell metabolism. Nano Res. 2014, 7, 805-815.

21

Wen, Y.; Waltman, A.; Han, H. F.; Collier, J. H. Switching the immunogenicity of peptide assemblies using surface properties. ACS Nano 2016, 10, 9274-9286.

22

Chen, G.; Wang, K. K.; Wu, P. K.; Wang, Y. X.; Zhou, Z. W.; Yin, L. F.; Sun, M. J.; Oupický, D. Development of fluorinated polyplex nanoemulsions for improved small interfering RNA delivery and cancer therapy. Nano Res. 2018, 11, 3746-3761.

23

Démoulins, T.; Ebensen, T.; Schulze, K.; Englezou, P. C.; Pelliccia, M.; Guzmán, C. A.; Ruggli, N.; McCullough, K. C. Self-replicating RNA vaccine functionality modulated by fine-tuning of polyplex delivery vehicle structure. J. Control. Release 2017, 266, 256-271.

24

Wilson, D. R.; Sen, R.; Sunshine, J. C.; Pardoll, D. M.; Green, J. J.; Kim, Y. J. Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy. Nanomedicine 2018, 14, 237-246.

25

Shmueli, R. B.; Anderson, D. G.; Green, J. J. Electrostatic surface modifications to improve gene delivery. Expert Opin. Drug Deliv. 2010, 7, 535-550.

26

Lynn, D. M.; Langer, R. Degradable poly(β-amino esters): Synthesis, characterization, and self-assembly with plasmid DNA. J. Am. Chem. Soc. 2000, 122, 10761-10768.

27

Andorko, J. I.; Hess, K. L.; Pineault, K. G.; Jewell, C. M. Intrinsic immunogenicity of rapidly-degradable polymers evolves during degradation. Acta Biomater. 2016, 32, 24-34.

28

Andorko, J. I.; Pineault, K. G.; Jewell, C. M. Impact of molecular weight on the intrinsic immunogenic activity of poly(beta amino esters). J. Biomed. Mater. Res. Part A 2017, 105, 1219-1229.

29

Pack, D. W.; Hoffman, A. S.; Pun, S.; Stayton, P. S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 2005, 4, 581-593.

30

Kasturi, S. P.; Skountzou, I.; Albrecht, R. A.; Koutsonanos, D.; Hua, T.; Nakaya, H. I.; Ravindran, R.; Stewart, S.; Alam, M.; Kwissa, M., et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 2011, 470, 543-547.

31

Ngwa, W.; Irabor, O. C.; Schoenfeld, J. D.; Hesser, J.; Demaria, S.; Formenti, S. C. Using immunotherapy to boost the abscopal effect. Nat. Rev. Cancer 2018, 18, 313-322.

32

Thomas, S. N.; Vokali, E.; Lund, A. W.; Hubbell, J. A.; Swartz, M. A. Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials 2014, 35, 814-824.

33

Chen, Q.; Xu, L. G.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 2016, 7, 13193.

Nano Research
Pages 5642-5656
Cite this article:
Tsai SJ, Andorko JI, Zeng X, et al. Polyplex interaction strength as a driver of potency during cancer immunotherapy. Nano Research, 2018, 11(10): 5642-5656. https://doi.org/10.1007/s12274-018-2181-y
Part of a topical collection:

717

Views

24

Crossref

N/A

Web of Science

24

Scopus

0

CSCD

Altmetrics

Received: 26 May 2018
Revised: 15 August 2018
Accepted: 16 August 2018
Published: 13 September 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return