Journal Home > Volume 11 , Issue 10

Spurred by numerous achievements in nanoscience and nanotechnology, the evolution of nanoparticulate drug delivery systems (nano-DDSs) is in its rapid growth period and attracting considerable attention due to their unique advantages in biomedical applications. Natural particulates ranging from mammalian cells to bacteria possess their own distinctive delivery processes and mechanisms, which inspires more design and development of cell-based DDSs by integrating the innate functions of cells with the nanoscale characteristics of nanoparticles. In this review article, we focus on the recent advances in cell-based DDSs for site-specific delivery of therapeutics and enhanced treatment of diseases. The promise and perils of cell-based DDSs are also discussed.


menu
Abstract
Full text
Outline
About this article

Cell-based drug delivery systems for biomedical applications

Show Author's information Teng LiHe DongCan Zhang( )Ran Mo( )
State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Discovery for Metabolic DiseasesCenter of Advanced Pharmaceuticals and BiomaterialsChina Pharmaceutical UniversityNanjing210009China

Abstract

Spurred by numerous achievements in nanoscience and nanotechnology, the evolution of nanoparticulate drug delivery systems (nano-DDSs) is in its rapid growth period and attracting considerable attention due to their unique advantages in biomedical applications. Natural particulates ranging from mammalian cells to bacteria possess their own distinctive delivery processes and mechanisms, which inspires more design and development of cell-based DDSs by integrating the innate functions of cells with the nanoscale characteristics of nanoparticles. In this review article, we focus on the recent advances in cell-based DDSs for site-specific delivery of therapeutics and enhanced treatment of diseases. The promise and perils of cell-based DDSs are also discussed.

Keywords: drug delivery, natural particulates, nanotechnology, bioinspired, biomedical application

References(77)

1

Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20-37.

2

Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751-760.

3

Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941-951.

4

Bobo, D.; Robinson, K. J.; Islam, J.; Thurecht, K. J.; Corrie, S. R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016, 33, 2373-2387.

5

Greish, K. Enhanced permeability and retention effect for selective targeting of anticancer nanomedicine: Are we there yet? Drug Discov. Today: Technol. 2012, 9, e161-e166.

6

Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.

7

Huang, Y. Q.; Yao, X.; Zhang, R.; Ouyang, L.; Jiang, R. C.; Liu, X. F.; Song, C. X.; Zhang, G. W.; Fan, Q. L.; Wang, L. H. et al. Cationic conjugated polymer/fluoresceinamine-hyaluronan complex for sensitive fluorescence detection of CD44 and tumor-targeted cell imaging. ACS Appl. Mater. Interfaces 2014, 6, 19144-19153.

8

Banerjee, R.; Tyagi, P.; Li, S.; Huang, L. Anisamide-targeted stealth liposomes: A potent carrier for targeting doxorubicin to human prostate cancer cells. Int. J. Cancer 2004, 112, 693-700.

9

Lu, L.; Zou, Y.; Yang, W. J; Meng, F. H; Deng, C.; Cheng, R.; Zhong, Z. Y. Anisamide-decorated pH-sensitive degradable chimaeric polymersomes mediate potent and targeted protein delivery to lung cancer cells. Biomacromolecules 2015, 16, 1726-1735.

10

Chen, F.; Zhao, Y. Y.; Pan, Y. M.; Xue, X. D.; Zhang, X.; Kumar, A.; Liang, X. J. Synergistically enhanced therapeutic effect of a carrier-free HCPT/Dox nanodrug on breast cancer cells through improved cellular drug accumulation. Mol. Pharm. 2015, 12, 2237-2244.

11

Lwin, T. M.; Murakami, T.; Miyake, K.; Yazaki, P. J.; Shivley, J. E.; Hoffman, R. M.; Bouvet, M. Tumor-specific labeling of pancreatic cancer using a humanized anti-CEA antibody conjugated to a near-infrared fluorophore. Ann. Surg. Oncol. 2018, 25, 1079-1085.

12

Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2016, 2, 16075.

13

Mo, R.; Gu, Z. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater. Today 2016, 19, 274-283.

14

Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991-1003.

15

Yoo, J. W.; Irvine, D. J.; Discher, D. E.; Mitragotri, S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 2011, 10, 521-535.

16

Batrakova, E. V.; Gendelman, H. E.; Kabanov, A. V. Cell-mediated drug delivery. Expert Opin. Drug Deliv. 2011, 8, 415-433.

17

Zhai, Y. H.; Su, J. H.; Ran, W.; Zhang, P. C.; Yin, Q.; Zhang, Z. W.; Yu, H. J.; Li, Y. P. Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics 2017, 7, 2575-2592.

18

Tan, S. W.; Wu, T. T.; Zhang, D.; Zhang, Z. P. Cell or cell membrane-based drug delivery systems. Theranostics 2015, 5, 863-881.

19

Higgins, J. M. Red blood cell population dynamics. Clin. Lab. Med. 2015, 35, 43-57.

20

Millán, C. G.; Marinero, M. L. S.; Castañeda, A. Z.; Lanao, J. M. Drug, enzyme and peptide delivery using erythrocytes as carriers. J. Controlled Release 2004, 95, 27-49.

21

Ihler, G. M.; Glew, R. H.; Schnure, F. W. Enzyme loading of erythrocytes. Proc. Natl. Acad. Sci. USA 1973, 70, 2663-2666.

22

Wibroe, P. P.; Anselmo, A. C.; Nilsson, P. H.; Sarode, A.; Gupta, V.; Urbanics, R.; Szebeni, J.; Hunter, A. C.; Mitragotri, S.; Mollnes, T. E. et al. Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. Nat. Nanotechnol. 2017, 12, 589-594.

23

Hu, C. M. J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R. H.; Zhang, L. F. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA 2011, 108, 10980-10985.

24

Hu, C. M. J.; Fang, R. H.; Copp, J.; Luk, B. T.; Zhang, L. F. A biomimetic nanosponge that absorbs pore-forming toxins. Nat. Nanotechnol. 2013, 8, 336-340.

25

Hu, C. M. J.; Fang, R. H.; Luk, B. T.; Zhang, L. F. Nanoparticle-detained toxins for safe and effective vaccination. Nat. Nanotechnol. 2013, 8, 933-938.

26

Wang, F.; Gao, W. W.; Thamphiwatana, S.; Luk, B. T.; Angsantikul, P.; Zhang, Q. Z.; Hu, C. M. J.; Fang, R. H.; Copp, J. A.; Pornpattananangkul, D. et al. Hydrogel retaining toxin-absorbing nanosponges for local treatment of methicillin-resistant Staphylococcus aureus infection. Adv. Mater. 2015, 27, 3437-3443.

27

Zhang, X. X.; Angsantikul, P.; Ying, M.; Zhuang, J.; Zhang, Q. Z.; Wei, X. L.; Jiang, Y.; Zhang, Y.; Dehaini, D.; Chen, M. C. et al. Remote loading of small-molecule therapeutics into cholesterol-enriched cell-membrane-derived vesicles. Angew. Chem. Int. Ed. 2017, 56, 14075-14079.

28

Su, J. H.; Sun, H. P.; Meng, Q. S.; Zhang, P. C.; Yin, Q.; Li, Y. P. Enhanced blood suspensibility and laser-activated tumor-specific drug release of theranostic mesoporous silica nanoparticles by functionalizing with erythrocyte membranes. Theranostics 2017, 7, 523-537.

29

Gao, M.; Liang, C.; Song, X. J.; Chen, Q.; Jin, Q. T.; Wang, C.; Liu, Z. Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv. Mater. 2017, 29, 1701429.

30

Guo, Y. Y.; Wang, D.; Song, Q. L.; Wu, T. T.; Zhuang, X. T.; Bao, Y. L.; Kong, M.; Qi, Y.; Tan, S. W.; Zhang, Z. P. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma. ACS Nano 2015, 9, 6918-6933.

31

Wang, C.; Ye, Y. Q.; Sun, W. J.; Yu, J. C.; Wang, J. Q.; Lawrence, D. S.; Buse, J. B.; Gu, Z. Red blood cells for glucose-responsive insulin delivery. Adv. Mater. 2017, 29, 1606617.

32

Wang, C.; Sun, W. J.; Ye, Y. Q.; Hu, Q. Y.; Bomba, H. N.; Gu, Z. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat. Biomed. Eng. 2017, 1, 0011.

33

Hu, Q. Y.; Sun, W. J.; Qian, C. G.; Wang, C.; Bomba, H. N.; Gu, Z. Anticancer platelet-mimicking nanovehicles. Adv. Mater. 2015, 27, 7043-7050.

34

Hu, Q. Y.; Qian, C. G.; Sun, W. J.; Wang, J. Q.; Chen, Z. W.; Bomba, H. N.; Xin, H. L.; Shen, Q. D.; Gu, Z. Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Adv. Mater. 2016, 28, 9573-9580.

35

Tang, J. N.; Su, T.; Huang, K.; Dinh, P. U.; Wang, Z. G.; Vandergriff, A.; Hensley, M. T.; Cores, J.; Allen, T.; Li, T. S. et al. Targeted repair of heart injury by stem cells fused with platelet nanovesicles. Nat. Biomed. Eng. 2018, 2, 17-26.

36

Hu, C. M. J.; Fang, R. H.; Wang, K. C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015, 526, 118-121.

37

De Palma, M.; Mazzieri, R.; Politi, L. S.; Pucci, F.; Zonari, E.; Sitia, G.; Mazzoleni, S.; Moi, D.; Venneri, M. A.; Indraccolo, S. et al. Tumor-targeted interferon-α delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 2008, 14, 299-311.

38

Smith, B. R.; Ghosn, E. E. B.; Rallapalli, H.; Prescher, J. A.; Larson, T.; Herzenberg, L. A.; Gambhir, S. S. Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery. Nat. Nanotechnol. 2014, 9, 481-487.

39

Lang, T. Q.; Dong, X. Y.; Huang, Y.; Ran, W.; Yin, Q.; Zhang, P. C.; Zhang, Z. W.; Yu, H. J.; Li, Y. P. Ly6Chi monocytes delivering pH-sensitive micelle loading paclitaxel improve targeting therapy of metastatic breast cancer. Adv. Funct. Mater. 2017, 27, 1701093.

40

He, X. Y.; Cao, H. Q.; Wang, H.; Tan, T.; Yu, H. J.; Zhang, P. C.; Yin, Q.; Zhang, Z. W.; Li, Y. P. Inflammatory monocytes loading protease-sensitive nanoparticles enable lung metastasis targeting and intelligent drug release for anti-metastasis therapy. Nano Lett. 2017, 17, 5546-5554.

41

Doshi, N.; Swiston, A. J.; Gilbert, J. B.; Alcaraz, M. L.; Cohen, R. E.; Rubner, M. F.; Mitragotri, S. Cell-based drug delivery devices using phagocytosis-resistant backpacks. Adv. Mater. 2011, 23, H105-H109.

42

Cao, H. Q.; Dan, Z. L.; He, X. Y.; Zhang, Z. W.; Yu, H. J.; Yin, Q.; Li, Y. P. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano 2016, 10, 7738-7748.

43

Zhang, Y.; Cai, K. M.; Li, C.; Guo, Q.; Chen, Q. J.; He, X.; Liu, L. S.; Zhang, Y. J.; Lu, Y. F.; Chen, X. L. et al. Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett. 2018, 18, 1908-1915.

44

Xue, J. W.; Zhao, Z. K.; Zhang, L.; Xue, L. J.; Shen, S. Y.; Wen, Y. J.; Wei, Z. Y.; Wang, L.; Kong, L. Y.; Sun, H. B. et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol. 2017, 12, 692-700.

45

Villanueva, M. T. Chemotherapy: Neutrophils deliver the goods. Nat. Rev. Cancer 2017, 17, 454-455.

46

Osuka, S.; Van Meir, E. G. Cancer therapy: Neutrophils traffic in cancer nanodrugs. Nat. Nanotechnol. 2017, 12, 616-618.

47

Wang, Z. J; Li, J.; Cho, J.; Malik, A. B. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nat. Nanotechnol. 2014, 9, 204-210.

48

Chu, D. F.; Gao, J.; Wang, Z. J. Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection. ACS Nano 2015, 9, 11800-11811.

49

Zhang, C.; Ling, C. L.; Pang, L.; Wang, Q.; Liu, J. X.; Wang B. S.; Liang, J. M.; Guo, Y. Z.; Qin, J.; Wang, J. X. Direct macromolecular drug delivery to cerebral ischemia area using neutrophil-mediated nanoparticles. Theranostics 2017, 7, 3260-3275.

50

Kang, T.; Zhu, Q. Q.; Wei, D.; Feng, J. X.; Yao, J. H.; Jiang, T. Z.; Song, Q. X.; Wei, X. B.; Chen, H. Z.; Gao, X. L. et al. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano 2017, 11, 1397-1411.

51

Stephan, M. T.; Moon, J. J.; Um, S. H.; Bershteyn, A.; Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 2010, 16, 1035-1041.

52

Huang, B.; Abraham, W. D.; Zheng, Y. R.; López, S. C. B.; Luo, S. S.; Irvine, D. J. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci. Transl. Med. 2015, 7, 291ra94.

53

Tang, L.; Zheng, Y. R.; Melo, M. B.; Mabardi, L.; Castaño, A. P.; Xie, Y. Q.; Li, N.; Kudchodkar, S. B.; Wong, H. C.; Jeng, E. K. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 2018, 36, 707-716.

54

Aboody, K. S.; Brown, A.; Rainov, N. G.; Bower, K. A.; Liu, S. X.; Yang, W.; Small, J. E.; Herrlinger, U.; Ourednik, V.; Black, P. M. et al. Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas. Proc. Natl. Acad. Sci. USA 2000, 97, 12846-12851.

55

Kim, S. K.; Kim, S. U.; Park, I. H.; Bang, J. H.; Aboody, K. S.; Wang, K. C.; Cho, B. K.; Kim, M.; Menon, L. G.; Black, P. M. et al. Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin. Cancer Res. 2006, 12, 5550-5556.

56

Yuan, X. P.; Hu, J. W.; Belladonna, M. L.; Black, K. L.; Yu, J. S. Interleukin-23-expressing bone marrow-derived neural stem-like cells exhibit antitumor activity against intracranial glioma. Cancer Res. 2006, 66, 2630-2638.

57

Bagó, J. R.; Okolie, O.; Dumitru, R.; Ewend, M. G.; Parker, J. S.; Werff, R. V.; Underhill, T. M.; Schmid, R. S.; Miller, C. R.; Hingtgen, S. D. Tumor-homing cytotoxic human induced neural stem cells for cancer therapy. Sci. Transl. Med. 2017, 9, eaah6510.

58

Mooney, R.; Roma, L.; Zhao, D. H.; Van Haute D.; Garcia, E.; Kim, S. U.; Annala, A. J.; Aboody, K. S.; Berlin, J. M. Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy. ACS Nano 2014, 8, 12450-12460.

59

Reagan, M. R.; Kaplan, D. L. Concise review: Mesenchymal stem cell tumor-homing: Detection methods in disease model systems. Stem Cells 2011, 29, 920-927.

60

Wang, H.; Cao, F.; De, A.; Cao, Y.; Contag, C.; Gambhir, S. S.; Wu, J. C.; Chen, X. Y. Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells 2009, 27, 1548-1558.

61

Zlotnik, A.; Burkhardt, A. M.; Homey, B. Homeostatic chemokine receptors and organ-specific metastasis. Nat. Rev. Immunol. 2011, 11, 597-606.

62

Liu, L. N.; Zhang, S. X.; Liao, W. B.; Farhoodi, H. P.; Wong, C. W.; Chen, C. C.; Ségaliny, A. I.; Chacko, J. V.; Nguyen, L. P.; Lu, M. R. et al. Mechanoresponsive stem cells to target cancer metastases through biophysical cues. Sci. Transl. Med. 2017, 9, eaan2966.

63

Zhao, Y. K.; Tang, S. S.; Guo, J. M.; Alahdal, M.; Cao, S. X.; Yang, Z. C.; Zhang, F. F.; Shen, Y. M.; Sun, M. J.; Mo, R. et al. Targeted delivery of doxorubicin by nano-loaded mesenchymal stem cells for lung melanoma metastases therapy. Sci. Rep. 2017, 7, 44758.

64

Li, L. L.; Guan, Y. Q.; Liu, H. Y.; Hao, N. J.; Liu, T. L.; Meng, X. W.; Fu, C. H.; Li, Y. Z.; Qu, Q. L.; Zhang, Y. G. et al. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano 2011, 5, 7462-7470.

65

Luo, C. H.; Huang, C. T.; Su, C. H.; Yeh, C. S. Bacteria-mediated hypoxia-specific delivery of nanoparticles for tumors imaging and therapy. Nano Lett. 2016, 16, 3493-3499.

66

Felfoul, O.; Mohammadi, M.; Taherkhani, S.; De Lanauze, D.; Xu, Y. Z.; Loghin, D.; Essa, S.; Jancik, S.; Houle, D.; Lafleur, M. et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 2016, 11, 941-947.

67

Din, M. O.; Danino, T.; Prindle, A.; Skalak, M.; Selimkhanov, J.; Allen, K.; Julio, E.; Atolia, E.; Tsimring, L. S.; Bhatia, S. N. et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 2016, 536, 81-85.

68

Xiang, S. L.; Fruehauf, J.; Li, C. J. Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nat. Biotechnol. 2006, 24, 697-702.

69

Gujrati, V.; Kim, S.; Kim, S. H.; Min, J. J.; Choy, H. E.; Kim, S. C.; Jon, S. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano 2014, 8, 1525-1537.

70

Fan, J. X.; Li, Z. H.; Liu, X. H.; Zheng, D. W.; Chen, Y.; Zhang, X. Z. Bacteria-mediated tumor therapy utilizing photothermally-controlled TNF-α expression via oral administration. Nano Lett. 2018, 18, 2373-2380.

71

Sivan, A.; Corrales, L.; Hubert, N.; Williams, J. B.; Aquino-Michaels, K.; Earley, Z. M.; Benyamin, F. W.; Lei, Y. M.; Jabri, B.; Alegre, M. L. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015, 350, 1084-1089.

72

Matson, V.; Fessler, J.; Bao, R. Y.; Chongsuwat, T.; Zha, Y. Y.; Alegre, M. L.; Luke, J. J.; Gajewski, T. F. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 2018, 359, 104-108.

73

Gopalakrishnan, V.; Spencer, C. N.; Nezi, L.; Reuben, A.; Andrews, M. C.; Karpinets, T. V.; Prieto, P. A.; Vicente, D.; Hoffman, K.; Wei, S. C. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018, 359, 97-103.

74

Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C. P. M.; Alou, M. T.; Daillère, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M. P. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018, 359, 91-97.

75

Ma, C.; Han, M. J.; Heinrich, B.; Fu, Q.; Zhang, Q. F.; Sandhu, M.; Agdashian, D.; Terabe, M.; Berzofsky, J. A.; Fako, V. et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 2018, 360, eaan5931.

76

Geller, L. T.; Barzily-Rokni, M.; Danino, T.; Jonas, O. H.; Shental, N.; Nejman, D.; Gavert, N.; Zwang, Y.; Cooper, Z. A.; Shee, K. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 2017, 357, 1156-1160.

77

Bagnis, C.; Chiaroni, J.; Bailly, P. Elimination of blood group antigens: Hope and reality. Br. J Haematol. 2011, 152, 392-400.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 May 2018
Revised: 13 August 2018
Accepted: 14 August 2018
Published: 03 September 2018
Issue date: October 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledges

This work was supported by the National Natural Science Foundation of China (No. 81673381), the Natural Science Foundation of Jiangsu Province of China for Distinguished Young Scholars (No. BK20150029), the Program for Jiangsu Province Innovative Research Talents, and the Program for Jiangsu Province Innovative Research Team.

Return