Journal Home > Volume 12 , Issue 1

Inexpensive copper nanoparticles are generally thought to possess weak and broad localized surface plasmon resonance (LSPR). The present experimental and theoretical studies show that tailoring the Cu nanoparticle to a cubic shape results in a single intense, narrow, and asymmetric LSPR line shape, which is even superior to round-shaped gold nanoparticles. In this study, the dielectric function of copper is decomposed into an interband transition component and a free-electron component. This allows interband transition-induced plasmon damping to be visualized both spectrally and by surface polarization charges. The results reveal that the LSPR of Cu nanocubes originates from the corner mode as it is spectrally separated from the interband transitions. In addition, the interband transitions lead to severe damping of the local electromagnetic field but the cubic corner LSPR mode survives. Cu nanocubes display an extinction coefficient comparable to the dipole mode of a gold nanosphere with the same volume and show a larger local electromagnetic field enhancement. These results will guide development of inexpensive plasmonic copper-based nanomaterials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Origin of strong and narrow localized surface plasmon resonance of copper nanocubes

Show Author's information Peng Zheng1,§Haibin Tang1,§Botong Liu1,2Sujan Kasani1,3Ling Huang2( )Nianqiang Wu1( )
Department of Mechanical and Aerospace Engineering,West Virginia University,Morgantown,West Virginia,26506-6106,USA;
Institute of Advanced Materials,Nanjing Tech University,Nanjing,211816,China;
Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia 26506, USA

§ Peng Zheng and Haibin Tang contributed equally to this work.

Abstract

Inexpensive copper nanoparticles are generally thought to possess weak and broad localized surface plasmon resonance (LSPR). The present experimental and theoretical studies show that tailoring the Cu nanoparticle to a cubic shape results in a single intense, narrow, and asymmetric LSPR line shape, which is even superior to round-shaped gold nanoparticles. In this study, the dielectric function of copper is decomposed into an interband transition component and a free-electron component. This allows interband transition-induced plasmon damping to be visualized both spectrally and by surface polarization charges. The results reveal that the LSPR of Cu nanocubes originates from the corner mode as it is spectrally separated from the interband transitions. In addition, the interband transitions lead to severe damping of the local electromagnetic field but the cubic corner LSPR mode survives. Cu nanocubes display an extinction coefficient comparable to the dipole mode of a gold nanosphere with the same volume and show a larger local electromagnetic field enhancement. These results will guide development of inexpensive plasmonic copper-based nanomaterials.

Keywords: localized surface plasmon resonance, copper, nanocube, discrete dipole approximation, interband transition

References(35)

1

Du, W.; Wang, T.; Chu, H. S.; Wu, L.; Liu, R. R.; Sun, S.; Phua, W. K.; Wang, L. J.; Tomczak, N.; Nijhuis, C. A. On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions. Nat. Photonics 2016, 10, 274–280.

2

Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.

3

Andrew, T. L.; Tsai, H. Y.; Menon, R. Confining light to deep subwavelength dimensions to enable optical nanopatterning. Science 2009, 324, 917–921.

4

Li, J. T.; Cushing, S. K.; Meng, F. K.; Senty, T. R.; Bristow, A. D.; Wu, N. Q. Plasmon-induced resonance energy transfer for solar energy conversion. Nat. Photonics 2015, 9, 601–607.

5

Ni, X. J.; Wong, Z. J.; Mrejen, M.; Wang, Y.; Zhang, X. An ultrathin invisibility skin cloak for visible light. Science 2015, 349, 1310–1314.

6

Gömöry, F.; Solovyov, M.; Šouc, J.; Navau, C.; Prat-Camps, J.; Sanchez, A. Experimental realization of a magnetic cloak. Science 2012, 335, 1466–1468.

7

Kawamura, G.; Alvarez, S.; Stewart, I. E.; Catenacci, M.; Chen, Z. F.; Ha, Y. C. Production of oxidation-resistant Cu-based nanoparticles by wire explosion. Sci. Rep. 2015, 5, 18333.

8

Gawande, M. B.; Goswami, A.; Felpin, F. X.; Asefa, T.; Huang, X. X.; Silva, R.; Zou, X. X.; Zboril, R.; Varma, R. S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722–3811.

9

Liu, P. S.; Wang, H.; Li, X. M.; Rui, M. C.; Zeng, H. B. Localized surface plasmon resonance of Cu nanoparticles by laser ablation in liquid media. RSC Adv. 2015, 5, 79738–79745.

10

Gunalan, S.; Sivaraj, R.; Venckatesh, R. Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: Optical properties. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2012, 97, 1140–1144.

11

Pinchuk, A.; Von Plessen, G.; Kreibig, U. Influence of interband electronic transitions on the optical absorption in metallic nanoparticles. J. Phys. D: Appl. Phys. 2004, 37, 3133–3139.

12

Khurgin, J. B. Ultimate limit of field confinement by surface plasmon polaritons. Faraday Discuss. 2015, 178, 109–122.

13

Zayats, A. V.; Smolyaninov, I. I.; Maradudin, A. A. Nano-optics of surface plasmon polaritons. Phys. Rep. 2005, 408, 131–314.

14

Wang, H.; Tam, F.; Grady, N. K.; Halas, N. J. Cu nanoshells:  Effects of interband transitions on the nanoparticle plasmon resonance. J. Phys. Chem. B 2005, 109, 18218–18222.

15

Dang, T. M. D.; Le, T. T. T.; Fribourg-Blanc, E.; Dang, M. C. The influence of solvents and surfactants on the preparation of copper nanoparticles by a chemical reduction method. Adv. Nat. Sci: Nanosci. Nanotechnol. 2011, 2, 025004.

16

Chan, G. H.; Zhao, J.; Hicks, E. M.; Schatz, G. C.; Van Duyne, R. P. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 2007, 7, 1947–1952.

17

Sugawa, K.; Tamura, T.; Tahara, H.; Yamaguchi, D.; Akiyama, T.; Otsuki, J.; Kusaka, Y.; Fukuda, N.; Ushijima, H. Metal-enhanced fluorescence platforms based on plasmonic ordered copper arrays: Wavelength dependence of quenching and enhancement effects. ACS Nano 2013, 7, 9997–10010.

18

Yang, H. J.; He, S. Y.; Chen, H. L.; Tuan, H. Y. Monodisperse copper nanocubes: Synthesis, self-assembly, and large-area dense-packed films. Chem. Mater. 2014, 26, 1785–1793.

19

Guo, H. Z.; Chen, Y. Z.; Cortie, M. B.; Liu, X.; Xie, Q. S.; Wang, X.; Peng, D. L. Shape-selective formation of monodisperse copper nanospheres and nanocubes via disproportionation reaction route and their optical properties. J. Phys. Chem. C 2014, 118, 9801–9808.

20

Crane, C. C.; Wang, F.; Li, J.; Tao, J.; Zhu, Y. M.; Chen, J. Y. Synthesis of copper-silica core-shell nanostructures with sharp and stable localized surface plasmon resonance. J. Phys. Chem. C 2017, 121, 5684–5692.

21

Pirzadeh, Z.; Pakizeh, T.; Miljkovic, V.; Langhammer, C.; Dmitriev, A. Plasmon–interband coupling in nickel nanoantennas. ACS Photonics, 2014, 1, 158–162.

22

Zhang, S. P.; Bao, K.; Halas, N. J.; Xu, H. X.; Nordlander, P. Substrate- induced Fano resonances of a plasmonic nanocube: A route to increased- sensitivity localized surface plasmon resonance sensors revealed. Nano Lett. 2011, 11, 1657–1663.

23

Pellarin, M.; Ramade, J.; Rye, J. M.; Bonnet, C.; Broyer, M.; Lebeault, M. A.; Lermé, J.; Marguet, S.; Navarro, J. R. G.; Cottancin, E. Fano transparency in rounded nanocube dimers induced by gap plasmon coupling. ACS Nano 2016, 10, 11266–11279.

24

Ruppin, R. Plasmon frequencies of cube shaped metal clusters. Z. Phys. D. At., Mol. Clusters 1996, 36, 69–71.

25

Zhang, K. J.; Da, B.; Ding, Z. J. LSP modes of Ag nanocube and dimer studied by DDA simulation. Surf. Interface Anal. 2016, 48, 1256–1262.

26

Cortie, M. B.; Liu, F. G.; Arnold, M. D.; Niidome, Y. Multimode resonances in silver nanocuboids. Langmuir 2012, 28, 9103–9112.

27

Mazzucco, S.; Geuquet, N.; Ye, J.; Stéphan, O.; Van Roy, W.; Van Dorpe, P.; Henrard, L.; Kociak, M. Ultralocal modification of surface plasmons properties in silver nanocubes. Nano Lett. 2012, 12, 1288–1294.

28

Mogensen, K. B.; Kneipp, K. Size-dependent shifts of plasmon resonance in silver nanoparticle films using controlled dissolution: Monitoring the onset of surface screening effects. J. Phys. Chem. C 2014, 118, 28075–28083.

29

Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.

30

Hooshmand, N.; O'Neil, D.; Asiri, A. M.; El-Sayed, M. Spectroscopy of homo- and heterodimers of silver and gold nanocubes as a function of separation: A DDA simulation. J. Phys. Chem. A 2014, 118, 8338–8344.

31

Zeman, E. J.; Schatz, G. C. An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, in, Zn, and Cd. J. Phys. Chem. 1987, 91, 634–643.

32

Ehrenreich, H.; Philipp, H. R. Optical properties of Ag and Cu. Phys. Rev. 1962, 128, 1622–1629.

33

Fuchs, R. Theory of the optical properties of ionic crystal cubes. Phys. Rev. B 1975, 11, 1732–1740.

34

Draine, B. T.; Flatau, P. J. Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 1994, 11, 1491–1499.

35

Bigelow, N. W.; Vaschillo, A.; Iberi, V.; Camden, J. P.; Masiello, D. J. Characterization of the electron- and photon-driven plasmonic excitations of metal nanorods. ACS Nano 2012, 6, 7497–7504.

File
12274_2018_2178_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 June 2018
Revised: 15 July 2018
Accepted: 14 August 2018
Published: 31 August 2018
Issue date: January 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by NIH (R15NS087515). Use of WVU Shared Research Facilities was acknowledged. We are also grateful to the fruitful discussion with Dr. Alexander Govorov at Ohio University.

Return