Journal Home > Volume 11 , Issue 10

Surface functionalization is a widely adopted technique for surface modification which allows researchers to customize surfaces to integrate with their research. Surface functionalization has been used recently to adapt surfaces to integrate with biological materials specifically to isolate cells or mimic biological tissues through cell patterning. Cell isolation and cell patterning both can be integrated with extant techniques or surfaces to customize the research to whatever needs to be tested. Substrates such as metals, biologically mimicking surfaces, environmental responsive surfaces, and even three-dimensional surfaces such as hydrogels have all been adapted to allow for functionalization for both patterning and isolation. In this review we have described both the advantages and disadvantages of these techniques and the related chemistries to better understand these tools and how best to apply them in the hope that we can further expand upon the research in the field.


menu
Abstract
Full text
Outline
About this article

Plenty more room on the glass bottom: Surface functionalization and nanobiotechnology for cell isolation

Show Author's information Ali Ansari1( )P. I. Imoukhuede2( )
Bioengineering DepartmentUniversity of Illinois at Urbana-ChampaignUrbanaIL61801USA
Biomedical Engineering DepartmentWashington University in St. LouisSt. LouisMO63130USA

Abstract

Surface functionalization is a widely adopted technique for surface modification which allows researchers to customize surfaces to integrate with their research. Surface functionalization has been used recently to adapt surfaces to integrate with biological materials specifically to isolate cells or mimic biological tissues through cell patterning. Cell isolation and cell patterning both can be integrated with extant techniques or surfaces to customize the research to whatever needs to be tested. Substrates such as metals, biologically mimicking surfaces, environmental responsive surfaces, and even three-dimensional surfaces such as hydrogels have all been adapted to allow for functionalization for both patterning and isolation. In this review we have described both the advantages and disadvantages of these techniques and the related chemistries to better understand these tools and how best to apply them in the hope that we can further expand upon the research in the field.

Keywords: surface functionalization, cell isolation, cell patterning, self-assembled monolayers, hydrogels, surface modification

References(185)

1

Feynman, R. P. Plenty of room at the bottom. Am. Phys. Soc. 1959, 16, 1–11.

2

Von Der Mark, K.; Park, J.; Bauer, S.; Schmuki, P. Nanoscale engineering of biomimetic surfaces: Cues from the extracellular matrix. Cell Tissue Res. 2010, 339, 131–153.

3

Camci-Unal, G.; Nichol, J. W.; Bae, H.; Tekin, H.; Bischoff, J.; Khademhosseini, A. Hydrogel surfaces to promote attachment and spreading of endothelial progenitor cells. J. Tissue Eng. Regen. Med. 2013, 7, 337–347.

4

Song, Y. L.; Tian, T.; Shi, Y. Z.; Liu, W. L.; Zou, Y.; Khajvand, T.; Wang, S. L.; Zhu, Z.; Yang, C. Y. Enrichment and single-cell analysis of circulating tumor cells. Chem. Sci. 2017, 8, 1736–1751.

5

Iwata, Y.; Matsushita, T.; Horikawa, M.; DiLillo, D. J.; Yanaba, K.; Venturi, G. M.; Szabolcs, P. M.; Bernstein, S. H.; Magro, C. M.; Williams, A. D. et al. Characterization of a rare IL-10–competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 2011, 117, 530–541.

6

Rayment, E. A.; Williams, D. J. Concise review: Mind the gap: Challenges in characterizing and quantifying cell- and tissue-based therapies for clinical translation. Stem Cells 2010, 28, 996–1004.

7

Lukes, R. J.; Collins, R. D. Immunologic characterization of human malignant lymphomas. Cancer 1974, 34, 1488–1503.

DOI
8

Bertolini, F.; Shaked, Y.; Mancuso, P.; Kerbel, R. S. The multifaceted circulating endothelial cell in cancer: Towards marker and target identification. Nat. Rev. Cancer 2006, 6, 835–845.

9

Young, H. E.; Steele, T. A.; Bray, R. A.; Detmer, K.; Blake, L. W.; Lucas, P. W.; Black, A. C. Human pluripotent and progenitor cells display cell surface cluster differentiation markers CD10, CD13, CD56, and MHC Class-I. Exp. Biol. Med. 1999, 221, 63–72.

10

Human and Mouse CD Marker Handbook; BD Biosciences: San Jose, CA, USA, 2010.

11

Hochreiter-Hufford, A. E.; Lee, C. S.; Kinchen, J. M.; Sokolowski, J. D.; Arandjelovic, S.; Call, J. A.; Klibanov, A. L.; Yan, Z.; Mandell, J. W.; Ravichandran, K. S. Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature 2013, 497, 263–267.

12

Alunni-Fabbroni, M.; Sandri, M. T. Circulating tumour cells in clinical practice: Methods of detection and possible characterization. Methods 2010, 50, 289–297.

13

Hoshino, K.; Huang, Y. Y.; Lane, N.; Huebschman, M.; Uhr, J. W.; Frenkel, E. P.; Zhang, X. J. Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip 2011, 11, 3449–3457.

14

Stachelek, S. J.; Finley, M. J.; Alferiev, I. S.; Wang, F. X.; Tsai, R. K.; Eckells, E. C.; Tomczyk, N.; Connolly, J. M.; Discher, D. E.; Eckmann, D. M. et al. The effect of CD47 modified polymer surfaces on inflammatory cell attachment and activation. Biomaterials 2011, 32, 4317–4326.

15

Watkins, N. N.; Hassan, U.; Damhorst, G.; Ni, H. K.; Vaid, A.; Rodriguez, W.; Bashir, R. Microfluidic CD4+ and CD8+ T lymphocyte counters for point-of-care HIV diagnostics using whole blood. Sci. Transl. Med. 2013, 5, 214ra170.

16

Hassan, U.; Ghonge, T.; Reddy, B. Jr.; Patel, M.; Rappleye, M.; Taneja, I.; Tanna, A.; Healey, R.; Manusry, N.; Price, Z. et al. A point-of-care microfluidic biochip for quantification of CD64 expression from whole blood for sepsis stratification. Nat. Commun. 2017, 8, 15949.

17

Lin, Q. K.; Ding, X.; Qiu, F. Y.; Song, X. X.; Fu, G. S.; Ji, J. In situ endothelialization of intravascular stents coated with an anti-CD34 antibody functionalized heparin–collagen multilayer. Biomaterials 2010, 31, 4017–4025.

18

Ye, X. F.; Zhao, Q.; Sun, X. N.; Li, H. Q. Enhancement of mesenchymal stem cell attachment to decellularized porcine aortic valve scaffold by in vitro coating with antibody against CD90: A preliminary study on antibody-modified tissue-engineered heart valve. Tissue Eng. Part A 2009, 15, 1–11.

19

Imoukhuede, P. I.; Dokun, A. O.; Annex, B. H.; Popel, A. S. Endothelial cell-by-cell profiling reveals the temporal dynamics of VEGFR1 and VEGFR2 membrane localization after murine hindlimb ischemia. Am. J. Physiol. Heart Circ. Physiol. 2013, 304, H1085–H1093.

20

Lee-Montiel, F. T.; Li, P.; Imoukhuede, P. I. Quantum dot multiplexing for the profiling of cellular receptors. Nanoscale 2015, 7, 18504–18514.

21

Komohara, Y.; Jinushi, M.; Takeya, M. Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci. 2014, 105, 1–8.

22

Mittal, S.; Wong, I. Y.; Yanik, A. A.; Deen, W. M.; Toner, M. Discontinuous nanoporous membranes reduce non-specific fouling for immunoaffinity cell capture. Small 2013, 9, 4207–4214.

23

Imoukhuede, P. I.; Popel, A. S. Quantitative fluorescent profiling of VEGFRs reveals tumor cell and endothelial cell heterogeneity in breast cancer xenografts. Cancer Med. 2014, 3, 225–244.

24

Bashir, R.; Gomez, R.; Sarikaya, A.; Ladisch, M. R.; Sturgis, J.; Robinson, J. P. Adsorption of avidin on microfabricated surfaces for protein biochip applications. Biotechnol. Bioeng. 2001, 73, 324–328.

25

Millet, L. J.; Stewart, M. E.; Nuzzo, R. G.; Gillette, M. U. Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices. Lab Chip. 2010, 10, 1525–1535.

26

Coad, B. R.; Vasilev, K.; Diener, K. R.; Hayball, J. D.; Short, R. D.; Griesser, H. J. Immobilized streptavidin gradients as bioconjugation platforms. Langmuir 2012, 28, 2710–2717.

27

Lee-Montiel, F. T.; Imoukhuede, P. I. Engineering quantum dot calibration standards for quantitative fluorescent profiling. J. Mater. Chem. B 2013, 1, 6434–6441.

28

Williams, E. H.; Davydov, A. V.; Motayed, A.; Sundaresan, S. G.; Bocchini, P.; Richter, L. J.; Stan, G.; Steffens, K.; Zangmeister, R.; Schreifels, J. A. et al. Immobilization of streptavidin on 4H–SiC for biosensor development. Appl. Surf. Sci. 2012, 258, 6056–6063.

29

Uchida, K.; Otsuka, H.; Kaneko, M.; Kataoka, K.; Nagasaki, Y. A reactive poly(ethylene glycol) layer to achieve specific surface plasmon resonance sensing with a high S/N ratio:  The substantial role of a short underbrushed PEG layer in minimizing nonspecific adsorption. Anal. Chem. 2005, 77, 1075–1080.

30

Ansari, A.; Lee-Montiel, F. T.; Amos, J. R.; Imoukhuede, P. I. Secondary anchor targeted cell release. Biotechnol. Bioeng. 2015, 112, 2214–2227.

31

Ansari, A.; Patel, R.; Schultheis, K.; Naumovski, V.; Imoukhuede, P. I. A method of targeted cell isolation via glass surface functionalization. J. Vis. Exp. 2016, e54315.

32

Lagunas, A.; Comelles, J.; Martínez, E.; Samitier, J. Universal chemical gradient platforms using poly(methyl methacrylate) based on the biotin–streptavidin interaction for biological applications. Langmuir 2010, 26, 14154–14161.

33

Frischauf, A. M. Digestion of DNA: Size fractionation. Methods Enzymol. 1987, 152, 183–189.

34

Kimura, T.; Nakamura, N.; Sasaki, N.; Hashimoto, Y.; Sakaguchi, S.; Kimura, S.; Kishida, A. Capture and release of target cells using a surface that immobilizes an antibody via desthiobiotin–avidin interaction. Sens. Mater. 2016, 28, 1255–1263.

35

Segura, T.; Anderson, B. C.; Chung, P. H.; Webber, R. E.; Shull, K. R.; Shea, L. D. Crosslinked hyaluronic acid hydrogels: A strategy to functionalize and pattern. Biomaterials 2005, 26, 359–371.

36

Liu, H. L.; Liu, X. L.; Meng, J. X.; Zhang, P. C.; Yang, G.; Su, B.; Sun, K.; Chen, L.; Han, D.; Wang, S. T. et al. Hydrophobic interaction-mediated capture and release of cancer cells on thermoresponsive nanostructured surfaces. Adv. Mater. 2013, 25, 922–927.

37

Wan, Y.; Liu, Y. L.; Allen, P. B.; Asghar, W.; Mahmood, M. A. I.; Tan, J. F.; Duhon, H.; Kim, Y. T.; Ellington, A. D.; Iqbal, S. M. Capture, isolation and release of cancer cells with aptamer-functionalized glass bead array. Lab Chip 2012, 12, 4693–4701.

38

Zhang, Z. Y.; Chen, N. C.; Li, S. H.; Battig, M. R.; Wang, Y. Programmable hydrogels for controlled cell catch and release using hybridized aptamers and complementary sequences. J. Am. Chem. Soc. 2012, 134, 15716–15719.

39

Ramaswamy, V.; Monsalve, A.; Sautina, L.; Segal, M. S.; Dobson, J.; Allen, J. B. DNA aptamer assembly as a vascular endothelial growth factor receptor agonist. Nucleic Acid Ther. 2015, 25, 227–234.

40

Chen, L.; Liu, X. L.; Su, B.; Li, J.; Jiang, L.; Han, D.; Wang, S. T. Aptamer-mediated efficient capture and release of T lymphocytes on nanostructured surfaces. Adv. Mater. 2011, 23, 4376–4380.

41

Chen, N. C.; Zhang, Z. Y.; Soontornworajit, B.; Zhou, J.; Wang, Y. Cell adhesion on an artificial extracellular matrix using aptamer-functionalized PEG hydrogels. Biomaterials 2012, 33, 1353–1362.

42

Zhao, N.; Battig, M. R.; Xu, M.; Wang, X. L.; Xiong, N.; Wang, Y. Development of a dual-functional hydrogel using RGD and anti-VEGF aptamer. Macromol. Biosci. 2017, 17, 1700201.

43

Chen, H. W.; Medley, C. D.; Sefah, K.; Shangguan, D. H.; Tang, Z. W.; Meng, L.; Smith, J. E.; Tan, W. H. Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem 2008, 3, 991–1001.

44

Swaminathan, V. V.; Gannavaram, S.; Li, S. H.; Hu, H.; Yeom, J.; Wang, Y.; Zhu, L. K. Microfluidic platform with hierarchical micro/nanostructures and SELEX nucleic acid aptamer coating for isolation of circulating tumor cells. In Proceedings of the 13th IEEE International Conference on Nanotechnology, Beijing, China, 2013, pp 370–373.

45

Delač, M.; Motaln, H.; Ulrich, H.; Lah, T. T. Aptamer for imaging and therapeutic targeting of brain tumor glioblastoma. Cytometry A 2015, 87, 806–816.

46

Bunka, D. H. J.; Stockley, P. G. Aptamers come of age—At last. Nat. Rev. Microbiol. 2006, 4, 588–596.

47

Zhang, X. L.; Battig, M. R.; Chen, N. C.; Gaddes, E. R.; Duncan, K. L.; Wang, Y. Chimeric aptamer–gelatin hydrogels as an extracellular matrix mimic for loading cells and growth factors. Biomacromolecules 2016, 17, 778–787.

48

Gotrik, M. R.; Feagin, T. A.; Csordas, A. T.; Nakamoto, M. A.; Soh, H. T. Advancements in aptamer discovery technologies. Acc. Chem. Res. 2016, 49, 1903–1910.

49

Li, S. H.; Chen, N. C.; Zhang, Z. Y.; Wang, Y. Endonuclease-responsive aptamer-functionalized hydrogel coating for sequential catch and release of cancer cells. Biomaterials 2013, 34, 460–469.

50

Senaratne, W.; Andruzzi, L.; Ober, C. K. Self-assembled monolayers and polymer brushes in biotechnology:  Current applications and future perspectives. Biomacromolecules 2005, 6, 2427–2448.

51

Gao, Y.; Li, W. J.; Pappas, D. Recent advances in microfluidic cell separations. Analyst 2013, 138, 4714–4721.

52

Nolan, J. P.; Condello, D.; Duggan, E.; Naivar, M.; Novo, D. Visible and near infrared fluorescence spectral flow cytometry. Cytometry A 2013, 83, 253–264.

53

Kuntaegowdanahalli, S. S.; Bhagat, A. A. S.; Kumar, G.; Papautsky, I. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 2009, 9, 2973–2980.

54

Mizuarai, S.; Takahashi, K.; Kobayashi, T.; Kotani, H. Advances in isolation and characterization of homogeneous cell populations using laser microdissection. Histol. Histopathol. 2005, 20, 139–146.

55

Chen, S.; Weddell, J.; Gupta, P.; Conard, G.; Parkin, J.; Imoukhuede, P. I. qFlow cytometry-based receptoromic screening: A high-throughput quantification approach informing biomarker selection and nanosensor development. In Biomedical Nanotechnology; Petrosko, S. H.; Day, E. S., Eds.; Humana Press: New York, 2017; pp 117–138.

56

Imoukhuede, P. I.; Popel, A. S. Quantification and cell-to-cell variation of vascular endothelial growth factor receptors. Exp. Cell Res. 2011, 317, 955–965.

57

Imoukhuede, P. I.; Popel, A. S. Expression of VEGF receptors on endothelial cells in mouse skeletal muscle. PLoS One 2012, 7, e44791.

58

Ariyasu, S.; Hanaya, K.; Watanabe, E.; Suzuki, T.; Horie, K.; Hayase, M.; Abe, R.; Aoki, S. Selective capture and collection of live target cells using a photoreactive silicon wafer device modified with antibodies via a photocleavable linker. Langmuir 2012, 28, 13118–13126.

59

Regehr, K. J.; Domenech, M.; Koepsel, J. T.; Carver, K. C.; Ellison-Zelski, S. J.; Murphy, W. L.; Schuler, L. A.; Alarid, E. T.; Beebe, D. J. Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 2009, 9, 2132–2139.

60

Vermette, P.; Gengenbach, T.; Divisekera, U.; Kambouris, P. A.; Griesser, H. J.; Meagher, L. Immobilization and surface characterization of NeutrAvidin biotin-binding protein on different hydrogel interlayers. J. Colloid Interface Sci. 2003, 259, 13–26.

61

Lin, M.; Chen, J. F.; Lu, Y. T.; Zhang, Y.; Song, J. Z.; Hou, S.; Ke, Z. F.; Tseng, H. R. Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells. Acc. Chem. Res. 2014, 47, 2941–2950.

62

Compton, J. L.; Luo, J. C.; Ma, H.; Botvinick, E.; Venugopalan, V. High-throughput optical screening of cellular mechanotransduction. Nat. Photonics 2014, 8, 710–715.

63

Bacakova, L.; Filova, E.; Parizek, M.; Ruml, T.; Svorcik, V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011, 29, 739–767.

64

Jiang, X. Y.; Ferrigno, R.; Mrksich, M.; Whitesides, G. M. Electrochemical desorption of self-assembled monolayers noninvasively releases patterned cells from geometrical confinements. J. Am. Chem. Soc. 2003, 125, 2366–2367.

65

Khademhosseini, A.; Suh, K. Y.; Yang, J. M.; Eng, G.; Yeh, J.; Levenberg, S.; Langer, R. Layer-by-layer deposition of hyaluronic acid and poly-L-lysine for patterned cell co-cultures. Biomaterials 2004, 25, 3583–3592.

66

Wu, H. W.; Lin, C. C.; Lee, G. B. Stem cells in microfluidics. Biomicrofluidics 2011, 5, 013401.

67

Ingber, D. E. Reverse engineering human pathophysiology with organs-on-chips. Cell 2016, 164, 1105–1109.

68

Mahmood, M. A. I.; Arafat, C. M. A.; Kim, Y. T.; Iqbal, S. M. Quantitative classification of tumor cell morphological changes on selectively functionalized biochips. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, Japan, 2013, pp 4164–4166.

69

Zhao, Y. J.; Xu, D. K.; Tan, W. H. Aptamer-functionalized nano/micro-materials for clinical diagnosis: Isolation, release and bioanalysis of circulating tumor cells. Integr. Biol. 2017, 9, 188–205.

70

Frith, J. E.; Mills, R. J.; Cooper-White, J. J. Lateral spacing of adhesion peptides influences human mesenchymal stem cell behaviour. J. Cell Sci. 2012, 125, 317–327.

71

Zheng, X. J.; Jiang, L. N.; Schroeder, J.; Stopeck, A.; Zohar, Y. Isolation of viable cancer cells in antibody-functionalized microfluidic devices. Biomicrofluidics 2014, 8, 024119.

72

Boyer, M.; Townsend, L. E.; Vogel, L. M.; Falk, J.; Reitz-Vick, D.; Trevor, K. T.; Villalba, M.; Bendick, P. J.; Glover, J. L. Isolation of endothelial cells and their progenitor cells from human peripheral blood. J. Vasc. Surg. 2000, 31, 181–189.

73

Nagrath, S.; Sequist, L. V.; Maheswaran, S.; Bell, D. W.; Irimia, D.; Ulkus, L.; Smith, M. R.; Kwak, E. L.; Digumarthy, S.; Muzikansky, A. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007, 450, 1235–1239.

74

Murthy, S. K.; Sin, A.; Tompkins, R. G.; Toner, M. Effect of flow and surface conditions on human lymphocyte isolation using microfluidic chambers. Langmuir 2004, 20, 11649– 11655.

75

Bratskaya, S.; Marinin, D.; Nitschke, M.; Pleul, D.; Schwarz, S.; Simon, F. Polypropylene surface functionalization with chitosan. J. Adhes. Sci. Technol. 2004, 18, 1173–1186.

76

Villanueva, M. E.; González, J. A.; Rodríguez-Castellón, E.; Teves, S.; Copello, G. J. Antimicrobial surface functionalization of PVC by a guanidine based antimicrobial polymer. Mater. Sci. Eng. C 2016, 67, 214–220.

77

Harris, L. G.; Tosatti, S.; Wieland, M.; Textor, M.; Richards, R. G. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials 2004, 25, 4135–4148.

78

Zhu, J.; Nguyen, T.; Pei, R. J.; Stojanovic, M.; Lin, Q. Specific capture and temperature-mediated release of cells in an aptamer-based microfluidic device. Lab Chip 2012, 12, 3504–3513.

79

Mrksich, M. Tailored substrates for studies of attached cell culture. Cell. Mol. Life Sci. 1998, 54, 653–662.

80

Inaba, R.; Khademhosseini, A.; Suzuki, H.; Fukuda, J. Electrochemical desorption of self-assembled monolayers for engineering cellular tissues. Biomaterials 2009, 30, 3573–3579.

81

Yu, C. C.; Ho, B. C.; Juang, R. S.; Hsiao, Y. S.; Naidu, R. V. R.; Kuo, C. W.; You, Y. W.; Shyue, J. J.; Fang, J. T.; Chen, P. Poly(3, 4-ethylenedioxythiophene)-based nanofiber mats as an organic bioelectronic platform for programming multiple capture/release cycles of circulating tumor cells. ACS Appl. Mater. Interfaces 2017, 9, 30329–30342.

82

Love, J. C.; Wolfe, D. B.; Haasch, R.; Chabinyc, M. L.; Paul, K. E.; Whitesides, G. M.; Nuzzo, R. G. Formation and structure of self-assembled monolayers of alkanethiolates on palladium. J. Am. Chem. Soc. 2003, 125, 2597–2609.

83

Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1170.

84

Mullett, W. M.; Lai, E. P. C.; Yeung, J. M. Surface plasmon resonance-based immunoassays. Methods 2000, 22, 77–91.

85

Walczak, M. M.; Chung, C.; Stole, S. M.; Widrig, C. A.; Porter, M. D. Structure and interfacial properties of spontaneously adsorbed n-alkanethiolate monolayers on evaporated silver surfaces. J. Am. Chem. Soc. 1991, 113, 2370–2378.

86

Li, Z. Y.; Chang, S. C.; Williams, R. S. Self-assembly of alkanethiol molecules onto platinum and platinum oxide surfaces. Langmuir 2003, 19, 6744–6749.

87

Cerqueira, M. R. F.; Santos, M. S. F.; Matos, R. C.; Gutz, I. G. R.; Angnes, L. Use of poly(methyl methacrylate)/ polyethyleneimine flow microreactors for enzyme immobilization. Microchem. J. 2015, 118, 231–237.

88

Balakrishnan, B.; Kumar, D. S.; Yoshida, Y.; Jayakrishnan, A. Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility. Biomaterials 2005, 26, 3495–3502.

89

Sigal, G. B.; Mrksich, M.; Whitesides, G. M. Effect of surface wettability on the adsorption of proteins and detergents. J. Am. Chem. Soc. 1998, 120, 3464–3473.

90

Liu, H. L.; Wang, S. T. Poly(N-isopropylacrylamide)-based thermo-responsive surfaces with controllable cell adhesion. Sci. China Chem. 2014, 57, 552–557.

91

Chuah, Y. J.; Kuddannaya, S.; Lee, M. H. A.; Zhang, Y. L.; Kang, Y. J. The effects of poly(dimethylsiloxane) surface silanization on the mesenchymal stem cell fate. Biomater. Sci. 2015, 3, 383–390.

92

Kuddannaya, S.; Chuah, Y. J.; Lee, M. H. A.; Menon, N. V.; Kang, Y.; Zhang, Y. Surface chemical modification of poly(dimethylsiloxane) for the enhanced adhesion and proliferation of mesenchymal stem cells. ACS Appl. Mater. Interfaces 2013, 5, 9777–9784.

93

Marczak, B.; Butruk, B.; Ciach, T. Functionalization of polyurethane surfaces for further attachment of bioactive molecules. Challenges Mod. Technol. 2012, 3, 9–13.

94

Kuddannaya, S.; Chuah, Y.; Lee, M. H. A.; Menon, N. V.; Kang, Y. J.; Zhang, Y. L. Surface chemical modification of poly(dimethylsiloxane) for the enhanced adhesion and proliferation of mesenchymal stem cells. ACS Appl. Mater. Interfaces 2013, 5, 9777–9784.

95

Wan, Y.; Kim, Y. T.; Li, N.; Cho, S. K.; Bachoo, R.; Ellington, A. D.; Iqbal, S. M. Surface-immobilized aptamers for cancer cell isolation and microscopic cytology. Cancer Res. 2010, 70, 9371–9380.

96

Hu, B.; Zhu, Q. K.; Xu, Z. Z.; Wu, X. B. High binding yields of viable cancer cells on amino silane functionalized surfaces. Biomed. Res. 2015, 26, 452–455.

97

Ibarlucea, B.; Fernández-Sánchez, C.; Demming, S.; Büttgenbach, S.; Llobera, A. Selective functionalisation of PDMS-based photonic lab on a chip for biosensing. Analyst 2011, 136, 3496–3502.

98

Bu, J.; Kim, Y. J.; Kang, Y. T.; Lee, T. H.; Kim, J.; Kim, H.; Cho, Y. Graphene oxide coated fabric layers for the efficient isolation of circulating tumor cells. In Proceedings of the 30th International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, USA, 2017, pp 476–479.

99

Bu, J.; Kim, Y. J.; Kang, Y. T.; Lee, T. H.; Kim, J.; Cho, Y. H.; Han, S. W. Polyester fabric sheet layers functionalized with graphene oxide for sensitive isolation of circulating tumor cells. Biomaterials 2017, 125, 1–11.

100

Li, W.; Reátegui, E.; Park, M. H.; Castleberry, S.; Deng, J. Z.; Hsu, B.; Mayner, S.; Jensen, A. E.; Sequist, L. V.; Maheswaran, S. et al. Biodegradable nano-films for capture and non-invasive release of circulating tumor cells. Biomaterials 2015, 65, 93–102.

101

Reátegui, E.; Van der Vos, K. E.; Lai, C. P.; Zeinali, M.; Atai, N. A.; Aldikacti, B.; Floyd, F. P. Jr.; Khankhel, A.; Thapar, V.; Hochberg, F. H.; Sequist, L. V. et al. Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles. Nat. Commun. 2018, 9, 175.

102

Hyun, J.; Zhu, Y. J.; Liebmann-Vinson, A.; Beebe, T. P.; Chilkoti, A. Microstamping on an activated polymer surface: Patterning biotin and streptavidin onto common polymeric biomaterials. Langmuir 2001, 17, 6358–6367.

103

Yadav, A. R.; Sriram, R.; Carter, J. A.; Miller, B. L. Comparative study of solution-phase and vapor-phase deposition of aminosilanes on silicon dioxide surfaces. Mater. Sci. Eng. C 2014, 35, 283–290.

104

Andree, K. C.; Barradas, A. M. C.; Nguyen, A. T.; Mentink, A.; Stojanovic, I.; Baggerman, J.; Van Dalum, J.; Van Rijn, C. J. M.; Terstappen, L. W. M. M. Capture of tumor cells on anti-EpCAM-functionalized poly(acrylic acid)-coated surfaces. ACS Appl. Mater. Interfaces 2016, 8, 14349–14356.

105

Kurkuri, M. D.; Al-Ejeh, F.; Shi, J. Y.; Palms, D.; Prestidge, C.; Griesser, H. J.; Brown, M. P.; Thierry, B. Plasma functionalized PDMS microfluidic chips: Towards point-of-care capture of circulating tumor cells. J. Mater. Chem. 2011, 21, 8841–8848.

106

Vasdekis, A. E.; O'Neil, C. P.; Hubbell, J. A.; Psaltis, D. Microfluidic assays for DNA manipulation based on a block copolymer immobilization strategy. Biomacromolecules 2010, 11, 827–831.

107

Gach, P. C.; Attayek, P. J.; Whittlesey, R. L.; Yeh, J. J.; Allbritton, N. L. Micropallet arrays for the capture, isolation and culture of circulating tumor cells from whole blood of mice engrafted with primary human pancreatic adenocarcinoma. Biosens. Bioelectron. 2014, 54, 476–483.

108

Custódio, C. A.; Frias, A. M.; del Campo, A.; Reis, R. L.; Mano, J. F. Selective cell recruitment and spatially controlled cell attachment on instructive chitosan surfaces functionalized with antibodies. Biointerphases 2012, 7, 65.

109

Rafique, A.; Mahmood Zia, K.; Zuber, M.; Tabasum, S.; Rehman, S. Chitosan functionalized poly(vinyl alcohol) for prospects biomedical and industrial applications: A review. Int. J. Biol. Macromol. 2016, 87, 141–154.

110

Usman, A.; Mahmood Zia, K.; Zuber, M.; Tabasum, S.; Rehman, S.; Zia, F. Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. Int. J. Biol. Macromol. 2016, 86, 630–645.

111

Raman, R.; Grant, L.; Seo, Y.; Cvetkovic, C.; Gapinske, M.; Palasz, A.; Dabbous, H.; Kong, H.; Pinera, P. P.; Bashir, R. Damage, healing, and remodeling in optogenetic skeletal muscle bioactuators. Adv. Healthc. Mater. 2017, 6, 1700030.

112

Shaporenko, A.; Cyganik, P.; Buck, M.; Terfort, A.; Zharnikov, M. Self-assembled monolayers of aromatic selenolates on noble metal substrates. J. Phys. Chem. B 2005, 109, 13630–13638.

113

Aswal, D. K.; Lenfant, S.; Guerin, D.; Yakhmi, J. V.; Vuillaume, D. Self assembled monolayers on silicon for molecular electronics. Anal. Chim. Acta 2006, 568, 84–108.

114

Dillmore, W. S.; Yousaf, M. N.; Mrksich, M. A photochemical method for patterning the immobilization of ligands and cells to self-assembled monolayers. Langmuir 2004, 20, 7223–7231.

115

Kutsenko, V. Y.; Lopatina, Y. Y.; Bossard-Giannesini, L.; Marchenko, O. A.; Pluchery, O.; Snegir, S. V. Alkylthiol self-assembled monolayers on Au(111) with tailored tail groups for attaching gold nanoparticles. Nanotechnology 2017, 28, 235603.

116

Mrksich, M.; Chen, C. S.; Xia, Y.; Dike, L. E.; Ingber, D. E.; Whitesides, G. M. Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proc. Natl. Acad. Sci. USA 1996, 93, 10775–10778.

117

Biebuyck, H. A.; Bain, C. D.; Whitesides, G. M. Comparison of organic monolayers on polycrystalline gold spontaneously assembled from solutions containing dialkyl disulfides or alkanethiols. Langmuir 1994, 10, 1825–1831.

118

Muskal, N.; Turyan, I.; Mandler, D. Self-assembled monolayers on mercury surfaces. J. Electroanal. Chem. 1996, 409, 131–136.

119

Berthier, E.; Young, E. W. K.; Beebe, D. Engineers are from PDMS-land, biologists are from polystyrenia. Lab Chip 2012, 12, 1224–1237.

120

Chaloupková, Z.; Balzerová, A.; Bařinková, J.; Medříková, Z.; Šácha, P.; Beneš, P.; Ranc, V.; Konvalinka, J.; Zbořil, R. Label-free determination of prostate specific membrane antigen in human whole blood at nanomolar levels by magnetically assisted surface enhanced Raman spectroscopy. Anal. Chim. Acta 2018, 997, 44–51.

121

Carvalho, A.; Geissler, M.; Schmid, H.; Michel, B.; Delamarche, E. Self-assembled monolayers of eicosanethiol on palladium and their use in microcontact printing. Langmuir 2002, 18, 2406–2412.

122

Bain, C. D.; Whitesides, G. M. Molecular-level control over surface order in self-assembled monolayer films of thiols on gold. Science 1988, 240, 62–63.

123

Bain, C. D.; Troughton, E. B.; Tao, Y. T.; Evall, J.; Whitesides, G. M.; Nuzzo, R. G. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc. 1989, 111, 321–335.

124

Su, X. D.; Wu, Y. J.; Robelek, R.; Knoll, W. Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization. Langmuir 2005, 21, 348–353.

125

Dubois, L. H.; Zegarski, B. R.; Nuzzo, R. G. Molecular ordering of organosulfur compounds on Au(111) and Au(100): Adsorption from solution and in ultrahigh vacuum. J. Chem. Phys. 1993, 98, 678–688.

126

Fenter, P.; Eisenberger, P.; Li, J.; Camillone, N.; Bernasek, S.; Scoles, G.; Ramanarayanan, T. A.; Liang, K. S. Structure of octadecyl thiol self-assembled on the silver(111) surface: An incommensurate monolayer. Langmuir 1991, 7, 2013–2016.

127

Séguin, C.; McLachlan, J. M.; Norton, P. R.; Lagugné-Labarthet, F. Surface modification of poly(dimethylsiloxane) for microfluidic assay applications. Appl. Surf. Sci. 2010, 256, 2524–2531.

128

Li, Y.; Yuan, B.; Ji, H.; Han, D.; Chen, S. Q.; Tian, F.; Jiang, X. Y. A method for patterning multiple types of cells by using electrochemical desorption of self-assembled monolayers within microfluidic channels. Angew. Chem., Int. Ed. 2007, 46, 1094–1096.

129

Yousaf, M. N.; Houseman, B. T.; Mrksich, M. Using electroactive substrates to pattern the attachment of two different cell populations. Proc. Natl. Acad. Sci. USA 2001, 98, 5992–5996.

130

Zhang, P. C.; Chen, L.; Xu, T. L.; Liu, H. L.; Liu, X. L.; Meng, J. X.; Yang, G.; Jiang, L.; Wang, S. T. Programmable fractal nanostructured interfaces for specific recognition and electrochemical release of cancer cells. Adv. Mater. 2013, 25, 3566–3570.

131

Bhattacharya, S.; Datta, A.; Berg, J. M.; Gangopadhyay, S. Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J. Microelectromech. Syst. 2005, 14, 590–597.

132

Gervais, T.; El-Ali, J.; Günther, A.; Jensen, K. F. Flow-induced deformation of shallow microfluidic channels. Lab Chip 2006, 6, 500–507.

133

Watkins, N. N.; Hassan, U.; Damhorst, G.; Ni, H. K.; Vaid, A.; Rodriguez, W.; Bashir, R. Microfluidic CD4+ and CD8+ T lymphocyte counters for point-of-care HIV diagnostics using whole blood. Sci. Transl. Med. 2013, 5, 214ra170.

134

Mikolajczyk, S. D.; Millar, L. S.; Tsinberg, P.; Coutts, S. M.; Zomorrodi, M.; Pham, T.; Bischoff, F. Z.; Pircher, T. J. Detection of EpCAM-negative and cytokeratin-negative circulating tumor cells in peripheral blood. J. Oncol. 2011, 2011, 252361.

135

Myung, J. H.; Launiere, C. A.; Eddington, D. T.; Hong, S. Enhanced tumor cell isolation by a biomimetic combination of E-selectin and anti-EpCAM: Implications for the effective separation of circulating tumor cells (CTCs). Langmuir 2010, 26, 8589–8596.

136

Pecot, C. V.; Bischoff, F. Z.; Mayer, J. A.; Wong, K. L.; Pham, T.; Bottsford-Miller, J.; Stone, R. L.; Lin, Y. G.; Jaladurgam, P.; Roh, J. W. et al. A novel platform for detection of CK+ and CK CTCs. Cancer Discov. 2011, 1, 580–586.

137

Adams, A. A.; Okagbare, P. I.; Feng, J.; Hupert, M. L.; Patterson, D.; Götten, J.; McCarley, R. L.; Nikitopoulos, D.; Murphy, M. C.; Soper, S. A. Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. J. Am. Chem. Soc. 2008, 130, 8633–8641.

138

Karabacak, N. M.; Spuhler, P. S.; Fachin, F.; Lim, E. J.; Pai, V.; Ozkumur, E.; Martel, J. M.; Kojic, N.; Smith, K.; Chen, P. I. et al. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat. Protoc. 2014, 9, 694–710.

139

Kim, T. H.; Yoon, H. J.; Stella, P.; Nagrath, S. Cascaded spiral microfluidic device for deterministic and high purity continuous separation of circulating tumor cells. Biomicrofluidics 2014, 8, 064117.

140

Cohen, S. J.; Punt, C. J. A.; Iannotti, N.; Saidman, B. H.; Sabbath, K. D.; Gabrail, N. Y.; Picus, J.; Morse, M.; Mitchell, E.; Miller, M. C. et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J. Clin. Oncol. 2008, 26, 3213–3221.

141

O'Flaherty, J. D.; Gray, S.; Richard, D.; Fennell, D.; O'Leary, J. J.; Blackhall, F. H.; O'Byrne, K. J. Circulating tumour cells, their role in metastasis and their clinical utility in lung cancer. Lung Cancer 2012, 76, 19–25.

142

Saneinejad, S.; Shoichet, M. S. Patterned glass surfaces direct cell adhesion and process outgrowth of primary neurons of the central nervous system. J. Biomed. Mater. Res. 1998, 42, 13–19.

DOI
143

Mahmood, M. A. I.; Wan, Y.; Islam, M.; Ali, W.; Hanif, M.; Kim, Y. T.; Iqbal, S. M. Micro+nanotexturing of substrates to enhance ligand-assisted cancer cell isolation. Nanotechnology 2014, 25, 475102.

144

Sheng, W. A.; Chen, T.; Kamath, R.; Xiong, X. L.; Tan, W. H.; Fan, Z. H. Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic device. Anal. Chem. 2012, 84, 4199–4206.

145

Chen, H. W.; Medley, C. D.; Smith, J. E.; Sefah, K.; Shangguan, D.; Tang, Z. W.; Meng, L.; Tan, W. H. Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem. 2008, 3, 991–1001.

146

González, M.; Bagatolli, L. A.; Echabe, I.; Arrondo, J. L. R.; Argarañ, C. E.; Cantor, C. R.; Fidelio, G. D. Interaction of biotin with streptavidin thermostability and conformational changes upon binding. J. Biol. Chem. 1997, 272, 11288– 11294.

147

Holmberg, A.; Blomstergren, A.; Nord, O.; Lukacs, M.; Lundeberg, J.; Uhlén, M. The biotin–streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 2005, 26, 501–510.

148

Kobayashi, H.; Sakahara, H.; Endo, K.; Hosono, M.; Yao, Z. S.; Toyama, S.; Konishi, J. Comparison of the chase effects of avidin, streptavidin, neutravidin, and avidin-ferritin on a radiolabeled biotinylated anti-tumor monoclonal antibody. Jpn. J. Cancer Res. 1995, 86, 310–314.

149

Wilchek, M.; Bayer, E. A. Applications of avidin-biotin technology: Literature survey. Methods Enzymol. 1990, 184, 5–13.

150

Lee, G. U.; Kidwell, D. A.; Colton, R. J. Sensing discrete streptavidin-biotin interactions with atomic force microscopy. Langmuir 1994, 10, 354–357.

151

Nguyen, T. T.; Sly, K. L.; Conboy, J. C. Comparison of the energetics of avidin, streptavidin, neutravidin, and anti-biotin antibody binding to biotinylated lipid bilayer examined by second-harmonic generation. Anal. Chem. 2012, 84, 201–208.

152

Barton, A. C.; Davis, F.; Higson, S. P. J. Labeless immunosensor assay for the stroke marker protein neuron specific enolase based upon an alternating current impedance protocol. Anal. Chem. 2008, 80, 9411–9416.

153

Liu, H. L.; Li, Y. Y.; Sun, K.; Fan, J. B.; Zhang, P. C.; Meng, J. X.; Wang, S. T.; Jiang, L. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. J. Am. Chem. Soc. 2013, 135, 7603–7609.

154

Hsiao, Y. S.; Ho, B. C.; Yan, H. X.; Kuo, C. W.; Chueh, D. Y.; Yu, H. H.; Chen, P. L. Integrated 3D conducting polymer-based bioelectronics for capture and release of circulating tumor cells. J. Mater. Chem. B 2015, 3, 5103–5110.

155

Guillaume-Gentil, O.; Akiyama, Y.; Schuler, M.; Tang, C.; Textor, M.; Yamato, M.; Okano, T.; Vörös, J. Polyelectrolyte coatings with a potential for electronic control and cell sheet engineering. Adv. Mater. 2008, 20, 560–565.

156

Hsiao, Y. S.; Kuo, C. W.; Chen, P. L. Electrodes: Multifunctional graphene–PEDOT microelectrodes for on-chip manipulation of human mesenchymal stem cells (Adv. Funct. Mater. 37/2013). Adv. Funct. Mater. 2013, 23, 4648.

157

Persson, K. M.; Karlsson, R.; Svennersten, K.; Löffler, S.; Jager, E. W. H.; Richter-Dahlfors, A.; Konradsson, P.; Berggren, M. Electronic control of cell detachment using a self-doped conducting polymer. Adv. Mater. 2011, 23, 4403–4408.

158

Kwak, B.; Lee, J.; Lee, J.; Kim, H. S.; Kang, S.; Lee, Y. Spiral shape microfluidic channel for selective isolating of heterogenic circulating tumor cells. Biosens. Bioelectron. 2018, 101, 311–316.

159

Hoffmann, S.; Spee, C.; Murata, T.; Cui, J. Z.; Ryan, S. J.; Hinton, D. R. Rapid isolation of choriocapillary endothelial cells by Lycopersicon esculentum-coated Dynabeads. Graefe's Arch. Clin. Exp. Ophthalmol. 1998, 236, 779–784.

160

Jackson, C. J.; Garbett, P. K.; Nissen, B.; Schrieber, L. Binding of human endothelium to Ulex europaeus I-coated Dynabeads: Application to the isolation of microvascular endothelium. J. Cell Sci. 1990, 96, 257–262.

161

Tiwari, A.; Punshon, G.; Kidane, A.; Hamilton, G.; Seifalian, A. M. Magnetic beads (DynabeadTM) toxicity to endothelial cells at high bead concentration: Implication for tissue engineering of vascular prosthesis. Cell Biol. Toxicol. 2003, 19, 265–272.

162

Den Toonder, J. Circulating tumor cells: The grand challenge. Lab Chip 2011, 11, 375–377.

163

Yu, M.; Stott, S.; Toner, M.; Maheswaran, S.; Haber, D. A. Circulating tumor cells: Approaches to isolation and characterization. J. Cell Biol. 2011, 192, 373–382.

164

Miyazaki, H.; Kato, K.; Teramura, Y.; Iwata, H. A collagen-binding mimetic of neural cell adhesion molecule. Bioconjug. Chem. 2008, 19, 1119–1123.

165

Kato, K.; Sato, H.; Iwata, H. Ultrastructural study on the specific binding of genetically engineered epidermal growth factor to type i collagen fibrils. Bioconjug. Chem. 2007, 18, 2137–2143.

166

Raman, R.; Bhaduri, B.; Mir, M.; Shkumatov, A.; Lee, M. K.; Popescu, G.; Kong, H.; Bashir, R. High-resolution projection microstereolithography for patterning of neovasculature. Adv. Healthc. Mater. 2016, 5, 610–619.

167

Raman, R.; Grant, L.; Seo, Y.; Cvetkovic, C.; Gapinske, M.; Palasz, A.; Dabbous, H.; Kong, H.; Pinera, P. P.; Bashir, R. Damage, healing, and remodeling in optogenetic skeletal muscle bioactuators. Adv. Healthc. Mater. 2017, 6, 1700030.

168

Silva, A. K. A.; Richard, C.; Ducouret, G.; Bessodes, M.; Scherman, D.; Merten, O. W. Xyloglucan-derivatized films for the culture of adherent cells and their thermocontrolled detachment: A promising alternative to cells sensitive to protease treatment. Biomacromolecules 2013, 14, 512–519.

169

Lai, Y. K.; Fan, R. F. T. Effect of heparin-surface-modified poly(methyl methacrylate) intraocular lenses on the postoperative inflammation in an Asian population. J. Cataract Refract. Surg. 1996, 22 Suppl 1, 830–834.

170

Burdick, J. A.; Prestwich, G. D. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 2011, 23, H41–H56.

171

Abdeen, A. A.; Weiss, J. B.; Lee, J.; Kilian, K. A. Matrix composition and mechanics direct proangiogenic signaling from mesenchymal stem cells. Tissue Eng. Part A 2014, 20, 2737–2745.

172

Nikitovic, D.; Berdiaki, A.; Banos, A.; Tsatsakis, A.; Karamanos, N. K.; Tzanakakis, G. N. Could growth factor-mediated extracellular matrix deposition and degradation offer the ground for directed pharmacological targeting in fibrosarcoma? Curr. Med. Chem. 2013, 20, 2868–2880.

173

Shao, Z.; Friedlander, M.; Hurst, C. G.; Cui, Z. H.; Pei, D. T.; Evans, L. P.; Juan, A. M.; Tahir, H.; Duhamel, F.; Chen, J. et al. Correction: Choroid sprouting assay: An ex vivo model of microvascular angiogenesis. PLoS One 2013, 8, e69552.

174

Soontornworajit, B.; Zhou, J.; Shaw, M. T.; Fan, T. H.; Wang, Y. Hydrogel functionalization with DNA aptamers for sustained PDGF-BB release. Chem. Commun. 2010, 46, 1857–1859.

175

Welch, N. G.; Scoble, J. A.; Muir, B. W.; Pigram, P. J. Orientation and characterization of immobilized antibodies for improved immunoassays (review). Biointerphases 2017, 12, 02D301.

176

Kusnezow, W.; Hoheisel, J. D. Solid supports for microarray immunoassays. J. Mol. Recognit. 2003, 16, 165–176.

177

Peluso, P.; Wilson, D. S.; Do, D.; Tran, H.; Venkatasubbaiah, M.; Quincy, D.; Heidecker, B.; Poindexter, K.; Tolani, N.; Phelan, M. et al. Optimizing antibody immobilization strategies for the construction of protein microarrays. Anal. Biochem. 2003, 312, 113–124.

178

Yamada, N.; Okano, T.; Sakai, H.; Karikusa, F.; Sawasaki, Y.; Sakurai, Y. Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Die Makromol. Chem., Rapid Commun. 1990, 11, 571–576.

179

Okano, T.; Yamada, N.; Sakai, H.; Sakurai, Y. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J. Biomed. Mater. Res. 1993, 27, 1243–1251.

180

Lippert, L. G.; Hallock, J. T.; Dadosh, T.; Diroll, B. T.; Murray, C. B.; Goldman, Y. E. NeutrAvidin functionalization of CdSe/CdS quantum nanorods and quantification of biotin binding sites using biotin-4-fluorescein fluorescence quenching. Bioconjug. Chem. 2016, 27, 562–568.

181

Raman, R.; Bashir, R. Stereolithographic 3D bioprinting for biomedical applications. In Essentials of 3D Biofabrication and Translation; Atala, A.; Yoo, J. J., Eds.; Elsevier, Amsterdam, 2015; pp 89–121.

182

Gao, J.; Wang, H. L.; Shreve, A.; Iyer, R. Fullerene derivatives induce premature senescence: A new toxicity paradigm or novel biomedical applications. Toxicol. Appl. Pharmacol. 2010, 244, 130–143.

183

Hauck, T. S.; Anderson, R. E.; Fischer, H. C.; Newbigging, S.; Chan, W. C. W. In vivo quantum-dot toxicity assessment. Small 2010, 6, 138–144.

184

Kwon, O. H.; Kikuchi, A.; Yamato, M.; Sakurai, Y.; Okano, T. Rapid cell sheet detachment from Poly(N-isopropylacrylamide)-grafted porous cell culture membranes. J. Biomed. Mater. Res. 2000, 50, 82–89.

DOI
185

Diéguez, L.; Winter, M. A.; Pocock, K. J.; Bremmell, K. E.; Thierry, B. Efficient microfluidic negative enrichment of circulating tumor cells in blood using roughened PDMS. Analyst 2015, 140, 3565–3572.

Publication history
Copyright
Acknowledgements

Publication history

Received: 26 May 2018
Revised: 13 August 2018
Accepted: 14 August 2018
Published: 14 September 2018
Issue date: October 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

We would like to thank the National Science Foundation CBET (No. 1512598), the NSF CAREER Award CBET (No. 1653925) and the American Heart Association (No. 16SDG26940002) for funding support. Finally, we would also like to thank Stacie Chen and Spencer Mamer for stimulating conversation and advice about the paper.

Return