Journal Home > Volume 12 , Issue 1

In-air epitaxy of nanostructures (Aerotaxy) has recently emerged as a viable route for fast, large-scale production. In this study, we use small-angle X-ray scattering to perform direct in-flight characterizations of the first step of this process, i.e., the engineered formation of Au and Pt aerosol nanoparticles by spark generation in a flow of N2 gas. This represents a particular challenge for characterization because the particle density can be extremely low in controlled production. The particles produced are examined during production at operational pressures close to atmospheric conditions and exhibit a lognormal size distribution ranging from 5-100 nm. The Au and Pt particle production and detection are compared. We observe and characterize the nanoparticles at different stages of synthesis and extract the corresponding dominant physical properties, including the average particle diameter and sphericity, as influenced by particle sintering and the presence of aggregates. We observe highly sorted and sintered spherical Au nanoparticles at ultra-dilute concentrations (< 5 × 105 particles/cm3) corresponding to a volume fraction below 3 × 10-10, which is orders of magnitude below that of previously measured aerosols. We independently confirm an average particle radius of 25 nm via Guinier and Kratky plot analysis. Our study indicates that with high-intensity synchrotron beams and careful consideration of background removal, size and shape information can be obtained for extremely low particle concentrations with industrially relevant narrow size distributions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In situ observation of synthesized nanoparticles in ultra-dilute aerosols via X-ray scattering

Show Author's information Sarah R. McKibbin1( )Sofie Yngman1Olivier Balmes2Bengt O. Meuller1Simon Tågerud1Maria E. Messing1Giuseppe Portale3Michael Sztucki4Knut Deppert1Lars Samuelson1Martin H. Magnusson1Edvin Lundgren1Anders Mikkelsen1( )
Department of Physics and Nanolund,Lund University,Lund,Box 118,637553,Sweden;
MaxIV Laboratory,Lund University,Lund,Box 118,22100,Sweden;
University of Groningen,Zernike Institute for Advanced Materials,Nijenborgh 4,NL-9747 AG Groningen,The Netherlands;
ESRF - The European Synchrotron,CS 40220,38043 Grenoble Cedex 9,637553,France

Abstract

In-air epitaxy of nanostructures (Aerotaxy) has recently emerged as a viable route for fast, large-scale production. In this study, we use small-angle X-ray scattering to perform direct in-flight characterizations of the first step of this process, i.e., the engineered formation of Au and Pt aerosol nanoparticles by spark generation in a flow of N2 gas. This represents a particular challenge for characterization because the particle density can be extremely low in controlled production. The particles produced are examined during production at operational pressures close to atmospheric conditions and exhibit a lognormal size distribution ranging from 5-100 nm. The Au and Pt particle production and detection are compared. We observe and characterize the nanoparticles at different stages of synthesis and extract the corresponding dominant physical properties, including the average particle diameter and sphericity, as influenced by particle sintering and the presence of aggregates. We observe highly sorted and sintered spherical Au nanoparticles at ultra-dilute concentrations (< 5 × 105 particles/cm3) corresponding to a volume fraction below 3 × 10-10, which is orders of magnitude below that of previously measured aerosols. We independently confirm an average particle radius of 25 nm via Guinier and Kratky plot analysis. Our study indicates that with high-intensity synchrotron beams and careful consideration of background removal, size and shape information can be obtained for extremely low particle concentrations with industrially relevant narrow size distributions.

Keywords: aerosol, nanoparticle synthesis, in situ analysis, small-angle X-ray scattering, Aerotaxy

References(41)

1

Buseck, P. R.; Adachi, K. Nanoparticles in the atmosphere. Elements 2008, 4, 389-394.

2

Strobel, R.; Pratsinis, S. E. Flame aerosol synthesis of smart nanostructured materials. J. Mater. Chem. 2007, 17, 4743-4756.

3

Heurlin, M.; Magnusson, M. H.; Lindgren, D.; Ek, M.; Wallenberg, L. R.; Deppert, K.; Samuelson, L. Continuous gas-phase synthesis of nanowires with tunable properties. Nature 2012, 492, 90-94.

4

Magnusson, M. H.; Ohlsson, B. J.; Björk, M. T.; Dick, K. A.; Borgström, M. T.; Deppert, K.; Samuelson, L. Semiconductor nanostructures enabled by aerosol technology. Front. Phys. 2014, 9, 398-418.

5

Beaucage, G.; Kammler, H. K.; Mueller, R.; Strobel, R.; Agashe, N.; Pratsinis, S. E.; Narayanan, T. Probing the dynamics of nanoparticle growth in a flame using synchrotron radiation. Nat. Mater. 2004, 3, 370-374.

6

Zhang, R. Y.; Khalizov, A. F.; Pagels, J.; Zhang, D.; Xue, H. X.; McMurry, P. H. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. Proc. Natl. Acad. Sci. USA 2008, 105, 10291-10296.

7

Loh, N. D.; Hampton, C. Y.; Martin, A. V.; Starodub, D.; Sierra, R. G.; Barty, A.; Aquila, A.; Schulz, J.; Lomb, L.; Steinbrener, J. et al. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature 2012, 486, 513-517.

8

Schnadt, J.; Knudsen, J.; Andersen, J. N.; Siegbahn, H.; Pietzsch, A.; Hennies, F.; Johansson, N.; Mårtensson, N.; Öhrwall, G.; Bahr, S. et al. The new ambient-pressure X-ray photoelectron spectroscopy instrument at MAX-lab. J. Synchrotron Radiat. 2012, 19, 701-704.

9

Liu, X. S.; Yang, W. L.; Liu, Z. Recent progress on synchrotron-based in-situ soft X-ray spectroscopy for energy materials. Adv. Mater. 2014, 26, 7710-7729.

10

Ingham, B. X-ray scattering characterisation of nanoparticles. Crystallogr. Rev. 2015, 21, 229-303.

11

Wysocka, I.; Kowalska, E.; Trzciński, K.; Łapiński, M.; Nowaczyk, G.; Zielińska-Jurek, A. UV-vis-induced degradation of phenol over magnetic photocatalysts modified with Pt, Pd, Cu and Au nanoparticles. Nanomaterials 2018, 8, 28.

12

Lu, Y. F.; Fan, H. Y.; Stump, A.; Ward, T. L.; Rieker, T.; Brinker, C. J. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles Nature 1999, 398, 223-226.

13

Our, F. X.; Parent, P.; Laffon, C.; Marhaba, I.; Ferry, D.; Marcillaud, B.; Antonsson, E.; Benkoula, S.; Liu, X. J.; Nicolas, C. et al. First in-flight synchrotron X-ray absorption and photoemission study of carbon soot nanoparticles. Sci. Rep. 2016, 6, 36495.

14

Ferraro, G.; Fratini, E.; Rausa, R.; Fiaschi, P.; Baglioni, P. Multiscale characterization of some commercial carbon blacks and diesel engine soot. Energy Fuels 2016, 30, 9859-9866.

15

Sztucki, M.; Narayanan, T.; Beaucage, G. In situ study of aggregation of soot particles in an acetylene flame by small-angle X-ray scattering. J. Appl. Phys. 2007, 101, 114304.

16

Jerby, E.; Golts, A.; Shamir, Y.; Wonde, S.; Mitchell, J. B. A.; LeGarrec, J. L.; Narayanan, T.; Sztucki, M.; Ashkenazi, D.; Barkay, Z. et al. Nanoparticle plasma ejected directly from solid copper by localized microwaves. Appl. Phys. Lett. 2009, 95, 191501.

17

Hammler, H. K.; Beaucage, G.; Kohls, D. J.; Agashe, N.; Ilavsky, J. Monitoring simultaneously the growth of nanoparticles and aggregates by in situ ultra-small-angle X-ray scattering. J. Appl. Phys. 2005, 97, 054309.

18

Wang, J.; Seifert, S.; Winans, R. E.; Tolmachoff, E.; Xin, Y. X.; Chen, D. P.; Wang, H.; Anderson, S. L. In situ X-ray scattering and dynamical modeling of Pd catalyst nanoparticles formed in flames. J. Phys. Chem. C 2015, 119, 19073-19082.

19

Letzel, A.; Gökce, B.; Wagener, P.; Ibrahimkutty, S.; Menzel, A.; Plech, A.; Barcikowski, S. Size quenching during laser synthesis of colloids happens already in the vapor phase of the cavitation bubble. J. Phys. Chem. C 2017, 121, 5356-5365.

20

Megens, M.; van Kats, C. M.; Bösecke, P.; Vos, W. L. In situ characterization of colloidal spheres by synchrotron small-angle X-ray scattering. Langmuir 1997, 13, 6120-6129.

21

Smith, M. C.; Gilbert, J. A.; Mawdsley, J. R.; Seifert, S.; Myers, D. J. In situ small-angle X-ray scattering observation of Pt catalyst particle growth during potential cycling. J. Am. Chem. Soc. 2008, 130, 8112-8113.

22

Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Aberg, I.; Magnusson, M. H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2013, 339, 1057-1060.

23

Borgström, M. T.; Wallentin, J.; Heurlin, M.; Fält, S.; Wickert, P.; Leene, J.; Magnusson, M. H.; Deppert, K.; Samuelson, L. Nanowires with promise for photovoltaics. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1050-1061.

24

Qian, F.; Gradečak, S.; Li, Y.; Wen, C. Y.; Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 2005, 5, 2287-2291.

25

Messing, M. E.; Johansson, K. A.; Wallenberg, R.; Wallenberg, K. Generation of size-selected gold nanoparticles by spark discharge—For growth of epitaxial nanowires. Gold Bull. 2009, 42, 20-26.

26

Meuller, B. O.; Messing, M. E.; Engberg, D. L. J.; Jansson, A. M.; Johansson, L. I. M.; Norlén, S. M.; Tureson, N.; Deppert, K. Review of spark discharge generators for production of nanoparticle aerosols. Aerosol Sci. Technol. 2012, 46, 1256-1270.

27

Narayanan, T.; Diat, O.; Bösecke, P. SAXS and USAXS on the high brilliance beamline at the ESRF. Nucl. Inst. Methods Phys. Res. A. 2001, 467-468, 1005-1009.

28

Barnes, J. D.; Bras, W. Temperature-dependent three-dimensional small- angle scattering in semicrystalline polymers. J Appl. Crystallogr. 2003, 36, 664-668.

29

Portale, G.; Cavallo, D.; Alfonso, G. C.; Hermida-Merino, D.; van Drongelen, M.; Balzano, L.; Peters, G. W. M.; Goossens, J. G. P.; Bras W. Polymer crystallization studies under processing-relevant conditions at the SAXS/ WAXS DUBBLE beamline at the ESRF. J. Appl. Crystallogr. 2013, 46, 1681-1689.

30
Sztucki, M. On-Line Processing and Analysis of SAXS Data[Online]. http://www.saxsutilities.eu (accessed Mar 23, 2018).
31
Guinier, A.; Fournet, G. Small Angle Scattering of X-Rays; John Wiley and Sons: New York, 1955.
32

Hagen, D. E.; Alofs, D. J. Linear inversion method to obtain aerosol size distributions from measurements with a differential mobility analyzer. Aerosol Sci. Technol. 1983, 2, 465-475.

33

Mitchell, J. B. A.; Courbe, J.; Florescu-Mitchell, A. I.; di Stasio, S.; Weiss, T. Demonstration of soot particle resizing in an ethylene flame by small angle X-ray scattering. J. Appl. Phys. 2006, 100, 124918.

34
Glatter, O.; Kratky, O. Small Angle X-Ray Scattering; Academic Press: London, 1982.
35
X-Ray Data Booklet: Center for X-Ray Optics and Advanced Light Source; Lawrence Berkeley National Laboratory, University of California: Berkeley, CA, USA, 1982.
36

Messing, M. E.; Svensson, C. R.; Pagels, J.; Meuller, B. O.; Deppert, K.; Rissler, J. Gas-borne particles with tunable and highly controlled characteristics for nanotoxicology studies. Nanotoxicology 2012, 7, 1052-1063.

37

Messing, M. E.; Westerström, R.; Meuller, B. O.; Blomberg, S.; Gustafson, J.; Andersen, J. N.; Lundgren, E.; van Rijn, R.; Balmes, O.; Bluhm, H. et al. Generation of Pd model catalyst nanoparticles by spark discharge. J. Phys. Chem. C 2010, 114, 9257-9263.

38

Tabrizi, N. S.; Xu, Q.; van der Pers, N. M.; Lafont, U.; Schmidt-Ott, A. Synthesis of mixed metallic nanoparticles by spark discharge. J. Nanopart. Res. 2009, 11, 1209-1218.

39

Tabrizi, N. S.; Xu, Q.; van der Pers, N. M.; Schmidt-Ott, A. Generation of mixed metallic nanoparticles from immiscible metals by spark discharge. J. Nanopart. Res. 2010, 12, 247-259.

40

Schwyn, S.; Garwin, E.; Schmidt-Ott, A. Aerosol generation by spark discharge. J. Aerosol Sci. 1988, 19, 639-642

41

Knutson. E. O.; Whitby, K. T. Aerosol classification by electric mobility: Apparatus, theory, and applications. J. Aerosol Sci. 1975, 6, 443-445.

File
12274_2018_2170_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 23 March 2018
Revised: 04 August 2018
Accepted: 07 August 2018
Published: 03 September 2018
Issue date: January 2019

Copyright

© The Author(s) 2018

Acknowledgements

Acknowledgements

This work was performed within Nanolund at Lund University, and was supported by the Knut and Alice Wallenberg Foundation, the Swedish Research Council (VR) and the Swedish Foundation for Strategic Research (SSF). The Dutch Organization for Scientific Research (NWO) and the ESRF are acknowledged for providing beamtime for this project.

Rights and permissions

The article published in this journal is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return