Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
CO2 should be converted into chemical-fuels, and to reduce H2O to H2 over SrTiO3 (STO) owing to its negative conduction band position vs. NHE. Herein a novel B and Fe co-doped SrTiO3 (B, F-STO) photocatalyst was successfully fabricated via a single-step sol-hydrothermal process. Various experiments confirmed that B and Fe are effectively doped into the STO matrix. Boron substituted oxygen anions, while Fe substituted Ti cations. UV–visible diffuse reflectance spectra (UV–vis DRS) and valence-band X-ray photoelectron spectroscopy (XPS) spectra confirmed that the band gap of STO significantly reduced from 3.4 to 1.9 eV upon co-doping with B and Fe. Hence, the B, F-STO photocatalyst exhibits more absorption (λ ≤ 650 nm) compared to pure STO (λ ≤ 360 nm). Further, from photoluminescence spectra, fluorescence spectra, and photoelectrochemical measurements, charge separation in STO is considerably enhanced by co-doping B and Fe. This resulted in the improved UV–vis light catalytic activities for CO2 conversion to CH4 and CO and H2O splitting to evolve H2. The amounts of CH4 and CO produced over B, F-STO are ~ 17.2 and 21 μmol, respectively, about 5-fold enhanced compared to that of STO (~ 3.4 μmol CH4 and 5.2 μmol CO), and the calculated quantum efficiency at λ = 420 nm is ~ 2.16%. Similarly, the amount of H2 produced over B, F-STO is ~ 61 μmol, about 6.7-fold enhanced compared to that over STO (9 μmol), and the calculated quantum efficiency at λ = 420 nm is ~ 2.12%. This work provides feasible routes to fabricate highly efficient SrTiO3-based nanophotocatalysts for solar-fuel production.
Xiong, Z.; Lei, Z.; Ma, S. M.; Chen, X. X.; Gong, B. G.; Zhao, Y. C.; Zhang, J. Y.; Zheng, C. G.; Wu, J. C. S. Photocatalytic CO2 reduction over V and W codoped TiO2 catalyst in an internal-illuminated honeycomb photoreactor under simulated sunlight irradiation. Appl. Catal. B 2017, 219, 412-424.
Kim, A.; Debecker, D. P.; Devred, F.; Dubois, V.; Sanchez, C.; Sassoye, C. CO2 methanation on Ru/TiO2 catalysts: On the effect of mixing anatase and rutile TiO2 supports. Appl. Catal. B 2018, 220, 615-625.
Azadmanjiri, J.; Srivastava, V. K.; Kumar, P.; Nikzad, M.; Wang, J.; Yu, A. M. Two- and three-dimensional graphene- based hybrid composites for advanced energy storage and conversion devices. J. Mater. Chem. A 2018, 6, 702-734.
Yang, G.; Chen, D. M.; Ding, H.; Feng, J. J.; Zhang, J. Z.; Zhu, Y. F.; Hamid, S.; Bahnemann, D. W. Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency. Appl. Catal. B 2017, 219, 611-618.
Maeda, K. Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 2013, 3, 1486-1503.
Sahara, G.; Ishitani, O. Efficient photocatalysts for CO2 reduction. Inorg. Chem. 2015, 54, 5096-5104.
Bi, Y. Q.; Ehsan, M. F.; Huang, Y.; Jin, J. R.; He, T. Synthesis of Cr-doped SrTiO3 photocatalyst and its application in visible-light-driven transformation of CO2 into CH4. J. CO2 Util. 2015, 12, 43-48.
Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. , Int. Ed. 2013, 52, 7372-7408.
Ida, S.; Ishihara, T. Recent progress in two-dimensional oxide photocatalysts for water splitting. J. Phys. Chem. Lett. 2014, 5, 2533-2542.
Cao, S. W.; Yu, J. G. g-C3N4-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 2014, 5, 2101-2107.
Bai, S.; Wang, X. J.; Hu, C. Y.; Xie, M. L.; Jiang, J.; Xiong, Y. J. Two-dimensional g-C3N4: An ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis. Chem. Commun. 2014, 50, 6094-6097.
Hong, E.; Kim, D.; Kim, J. H. Heterostructured metal sulfide (ZnS-CuS-CdS) photocatalyst for high electron utilization in hydrogen production from solar water splitting. J. Ind. Eng. Chem. 2014, 20, 3869-3874.
Shen, S. H.; Chen, X. B.; Ren, F.; Kronawitter, C. X.; Mao, S. S.; Guo, L. J. Solar light-driven photocatalytic hydrogen evolution over ZnIn2S4 loaded with transition-metal sulfides. Nanoscale Res. Lett. 2011, 6, 290.
Wang, P.; Huang, B. B.; Dai, Y.; Whangbo, M. H. Plasmonic photocatalysts: Harvesting visible light with noble metal nanoparticles. Phys. Chem. Chem. Phys. 2012, 14, 9813-9825.
Yu, C. L.; Cao, F. F.; Li, G.; Wei, R. F.; Yu, J. C.; Jin, R. C.; Fan, Q. Z.; Wang, C. Y. Novel noble metal (Rh, Pd, Pt)/ BiOX(Cl, Br, I) composite photocatalysts with enhanced photocatalytic performance in dye degradation. Sep. Purif. Technol. 2013, 120, 110-122.
Shi, J. W.; Guo, L. J. ABO3-based photocatalysts for water splitting. Prog. Nat. Sci. Mater. Int. 2012, 22, 592-615.
Ding, J. J.; Bao, J.; Sun, S.; Luo, Z. L.; Gao, C. Combinatorial discovery of visible-light driven photocatalysts based on the ABO3-type (A = Y, La, Nd, Sm, Eu, Gd, Dy, Yb, B = Al and In) binary oxides. J. Comb. Chem. 2009, 11, 523-526.
Kanhere, P.; Chen, Z. A review on visible light active perovskite-based photocatalysts. Molecules 2014, 19, 19995-20022.
Townsend, T. K.; Browning, N. D.; Osterloh, F. E. Nanoscale strontium titanate photocatalysts for overall water splitting. ACS Nano 2012, 6, 7420-7426.
Sakata, Y.; Miyoshi, Y.; Maeda, T.; Ishikiriyama, K.; Yamazaki, Y.; Imamura, H.; Ham, Y.; Hisatomi, T.; Kubota, J.; Yamakata, A.; Domen, K. Photocatalytic property of metal ion added SrTiO3 to overall H2O splitting. Appl. Catal. A 2016, 521, 227-232.
Karaphun, A.; Hunpratub, S.; Swatsitang, E. Effect of annealing on magnetic properties of Fe-doped SrTiO3 nanopowders prepared by hydrothermal method. Microelectron. Eng. 2014, 126, 42-48.
Souza, A. E.; Santos, G. T. A.; Barra, B. C.; Macedo Jr, W. D.; Teixeira, S. R.; Santos, C. M.; Senos, A. M. O. R.; Amaral, L.; Longo, E. Photoluminescence of SrTiO3: Influence of particle size and morphology. Cryst. Growth Des. 2012, 12, 5671-5679.
Kim, D. H.; Bi, L.; Aimon, N. M.; Jiang, P.; Dionne, G. F.; Ross, C. A. Combinatorial pulsed laser deposition of Fe, Cr, Mn, and Ni-substituted SrTiO3 films on Si substrates. ACS Comb. Sci. 2012, 14, 179-190.
Piskunov, S.; Lisovski, O.; Begens, J.; Bocharov, D.; Zhukovskii, Y. F.; Wessel, M.; Spohr, E. C-, N-, S-, and Fe- doped TiO2 and SrTiO3 nanotubes for visible-light-driven photocatalytic water splitting: Prediction from first principles. J. Phys. Chem. C 2015, 119, 18686-18696.
Guo, Y. T.; Qiu, X. W.; Dong, H.; Zhou, X. Trends in non-metal doping of the SrTiO3 surface: A hybrid density functional study. Phys. Chem. Chem. Phys. 2015, 17, 21611-21621.
Li, L.; Yang, Y. L.; Liu, X. R.; Fan, R. Q.; Shi, Y.; Li, S.; Zhang, L. Y.; Fan, X.; Tang, P. X.; Xu, R.; Zhang, W. Z.; Wang, Y. Z.; Ma, L. Q. A direct synthesis of B-doped TiO2 and its photocatalytic performance on degradation of RhB. Appl. Surf. Sci. 2013, 265, 36-40.
In, S.; Orlov, A.; Berg, R.; García, F.; Pedrosa-Jimenez, S.; Tikhov, M. S.; Wright, D. S.; Lambert, R. M. Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts. J. Am. Chem. Soc. 2007, 129, 13790-13791.
Maldonado, F.; Maza, L.; Stashans, A. Electronic properties of Cr-, B-doped and codoped SrTiO3. J. Phys. Chem. Solids 2017, 100, 1-8.
Zhao, W.; Ma, W. H.; Chen, C. C.; Zhao, J. C.; Shuai, Z. G. Efficient degradation of toxic organic pollutants with Ni2O3/ TiO2-xBx under visible irradiation. J. Am. Chem. Soc. 2004, 126, 4782-4783.
Su, Y. L.; Han, S.; Zhang, X. W.; Chen, X. Q.; Lei, L. C. Preparation and visible-light-driven photoelectrocatalytic properties of boron-doped TiO2 nanotubes. Mater. Chem. Phys. 2008, 110, 239-246.
Yu, Z. W.; Shi, P.; Wu, X. Q.; Ren, W. Structural and electrical properties of SrFexTi1−xO3 (x = 0.001, 0.005 and 0.01) thin films prepared by pulsed laser depositions. Ceram. Int. 2015, 41, S223-S227.
Taibl, S.; Fafilek, G.; Fleig, J. Impedance spectra of Fe-doped SrTiO3 thin films upon bias voltage: Inductive loops as a trace of ion motion. Nanoscale 2016, 8, 13954-13966.
Da Silva, L. F.; Bernardi, M. I. B.; Maia, L. J. Q.; Frigo, G. J. M.; Mastelaro, V. R. Synthesis and thermal decomposition of SrTi1−x FexO3 (0.0 ≤ x ≤ 0.1) powders obtained by the polymeric precursor method. J. Therm. Anal. Calorim. 2009, 97, 173-177.
Lobacheva, O.; Yiu, Y. M.; Chen, N.; Sham, T. K.; Goncharova, L. V. Changes in local surface structure and Sr depletion in Fe-implanted SrTiO3 (001). Appl. Surf. Sci. 2017, 393, 74-81.
Mu, L. C.; Zhao, Y.; Li, A. L.; Wang, S. Y.; Wang, Z. L.; Yang, J. X.; Wang, Y.; Liu, T. F.; Chen, R. T.; Zhu, J.; Fan, F. T.; Li, R. G.; Li, C. Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting. Energy Environ. Sci. 2016, 9, 2463-2469.
Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Environmental implications of hydroxyl radicals (·OH). Chem. Rev. 2015, 115, 13051-13092.
Li, P.; Liu, C. B.; Wu, G. L.; Heng, Y.; Lin, S.; Ren, A.; Lv, K. H.; Xiao, L. S.; Shi, W. D. Solvothermal synthesis and visible light-driven photocatalytic degradation for tetracycline of Fe-doped SrTiO3. RSC Adv. 2014, 4, 47615-67624.
Da Silva, L. F.; M'Peko, J. C.; Andrés, J.; Beltrán, A.; Gracia, L.; Bernardi, M. I. B.; Mesquita, A.; Antonelli, E.; Moreira, M. L.; Mastelaro, V. R. Insight into the effects of Fe addition on the local structure and electronic properties of SrTiO3. J. Phys. Chem. C 2014, 118, 4930-4940.
Xie, T. H.; Sun, X. Y.; Lin, J. Enhanced photocatalytic degradation of RhB driven by visible light-induced MMCT of Ti(IV)−O−Fe(Ⅱ) formed in Fe-Doped SrTiO3. J. Phys. Chem. C 2008, 112, 9753-9759.
Yu, H.; Wang, J. J.; Yan, S. C.; Yu, T.; Zou, Z. G. Elements doping to expand the light response of SrTiO3. J. Photochem. Photobiol. A 2014, 275, 65-71.
Tu, Y. F.; Fu, Q. M.; Niu, X. J.; Sang, J. P.; Tan, Z. J.; Zheng, G.; Zou, X. W. Fabrication and photocatalytic property of ZnO/SrTiO3 core/shell nanorod arrays. Cryst. Res. Technol. 2013, 48, 138-144.
Jing, F. Y.; Zhang, D. Z.; Li, F.; Zhou, J. R.; Sun, D. M.; Ruan, S. P. High performance ultraviolet detector based on SrTiO3/TiO2 heterostructure fabricated by two steps in situ hydrothermal method. J. Alloys Compd. 2015, 650, 97-101.
Shi, J. W.; Ye, J. H.; Ma, L. J.; Ouyang, S. X.; Jing, D. W.; Guo, L. J. Site-selected doping of upconversion luminescent Er3+ into SrTiO3 for visible-light-driven photocatalytic H2 or O2 evolution. Chem. —Eur. J. 2012, 18, 7543-7551.
Liu, D. Q.; Zhang, Y. W.; Kang, H. J.; Li, J. L.; Chen, Z. N.; Wang, T. M. Direct preparation of La-doped SrTiO3 thermoelectric materials by mechanical alloying with carbon burial sintering. J. Eur. Ceram. Soc. 2018, 38, 807-811.
Yu, J.; Si, Z. C.; Chen, L.; Wu, X. D.; Weng, D. Selective catalytic reduction of NOx by ammonia over phosphate- containing Ce0.75Zr0.25O2 solids. Appl. Catal. B 2015, 163, 223-232.
Wen, X. J.; Niu, C. G.; Zhang, L.; Liang, C.; Zeng, G. M. An in depth mechanism insight of the degradation of multiple refractory pollutants via a novel SrTiO3/BiOI heterojunction photocatalysts. J. Catal. 2017, 356, 283-299.
Kiss, B.; Manning, T. D.; Hesp, D.; Didier, C.; Taylor, A.; Pickup, D. M.; Chadwick, A. V.; Allison, H. E.; Dhanak, V. R.; Claridge, J. B.; Darwent, J. R.; Rosseinsky, M. J. Nano-structured rhodium doped SrTiO3-visible light activated photocatalyst for water decontamination. Appl. Catal. B 2017, 206, 547-555.
Guan, X. J.; Guo, L. J. Cocatalytic effect of SrTiO3 on Ag3PO4 toward enhanced photocatalytic water oxidation. ACS Catal. 2014, 4, 3020-3026.
Humayun, M.; Sun, N.; Raziq, F.; Zhang, X. L.; Yan, R.; Li, Z. J.; Qu, Y.; Jing, L. Q. Synthesis of ZnO/Bi-doped porous LaFeO3 nanocomposites as highly efficient nano-photocatalysts dependent on the enhanced utilization of visible-light-excited electrons. Appl. Catal. B 2018, 231, 23-33.
Humayun, M.; Zada, A.; Li, Z. J.; Xie, M. Z.; Zhang, X. L.; Qu, Y.; Raziq, F.; Jing, L. Q. Enhanced visible-light activities of porous BiFeO3 by coupling with nanocrystalline TiO2 and mechanism. Appl. Catal. B 2016, 180, 219-226.
Humayun, M.; Qu, Y.; Raziq, F.; Yan, R.; Li, Z. J.; Zhang, X. L.; Jing, L. Q. Exceptional visible-light activities of TiO2-coupled N-doped porous perovskite LaFeO3 for 2, 4-dichlorophenol decomposition and CO2 conversion. Environ. Sci. Technol. 2016, 50, 13600-13610.
Yang, Y.; Cheng, Y. F. Bi-layered CeO2/SrTiO3 nanocomposite photoelectrode for energy storage and photocathodic protection. Electrochim. Acta 2017, 253, 134-141.