Journal Home > Volume 11 , Issue 12

Plasmon-induced polymerization can facilitate the site-selectivity and orientation of polymer growth, which enriches the toolbox of polymerization and nanofabrication. Here, we demonstrate plasmon-induced polymerization, accomplished by low-power laser excitation of gold nanoparticles (NPs). We selectively control the growth of polymers around single plasmonic NPs while monitoring the polymerization using dark field spectroscopy and subsequent scanning electron microscopy. This plasmon-induced polymerization, generated by hot electron initiation, not only precisely controls the thickness and composition of the polymer coatings but also regulates the location and orientation of the growth, which are strongly influenced by the laser polarization and near-field distribution around the plasmonic NPs. A saturation increase in the polymer thickness provides a strong support for our mechanism. This facile approach of nanoscale polymerization directed by light not only provides new opportunities in nanosynthesis and nanofabrication for functional devices, but also opens many routes for polymer physics and chemistry at the nanoscale level.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Plasmon-directed polymerization: Regulating polymer growth with light

Show Author's information Yunxia Wang1Shuangshuang Wang1Shunping Zhang1Oren A. Scherman3Jeremy J. Baumberg2Tao Ding1,2( )Hongxing Xu1
Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of ChinaSchool of Physics and TechnologyWuhan UniversityWuhan430072China
Nanophotonics Centre, Cavendish Laboratory, University of CambridgeCambridge, CB3 0HEUK
Department of Chemistry, University of Cambridge, Lensfield RoadCambridge, CB2 1EWUK

Abstract

Plasmon-induced polymerization can facilitate the site-selectivity and orientation of polymer growth, which enriches the toolbox of polymerization and nanofabrication. Here, we demonstrate plasmon-induced polymerization, accomplished by low-power laser excitation of gold nanoparticles (NPs). We selectively control the growth of polymers around single plasmonic NPs while monitoring the polymerization using dark field spectroscopy and subsequent scanning electron microscopy. This plasmon-induced polymerization, generated by hot electron initiation, not only precisely controls the thickness and composition of the polymer coatings but also regulates the location and orientation of the growth, which are strongly influenced by the laser polarization and near-field distribution around the plasmonic NPs. A saturation increase in the polymer thickness provides a strong support for our mechanism. This facile approach of nanoscale polymerization directed by light not only provides new opportunities in nanosynthesis and nanofabrication for functional devices, but also opens many routes for polymer physics and chemistry at the nanoscale level.

Keywords: polarization, hot electrons, plasmons, selective growth

References(24)

1

Cortés, E.; Xie, W.; Cambiasso, J.; Jermyn, A. S.; Sundararaman, R.; Narang, P.; Schlücker, S.; Maier, S. A. Plasmonic hot electron transport drives nano-localized chemistry. Nat. Commun. 2017, 8, 14880.

2

Ding, T.; Mertens, J.; Lombardi, A.; Scherman, O. A.; Baumberg, J. J. Light-directed tuning of plasmon resonances via plasmon-induced polymerization using hot electrons. ACS Photonics 2017, 4, 1453-1458.

3

Knight, M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J. Photodetection with active optical antennas. Science 2011, 332, 702-704.

4

Kim, M.; Lin, M. H.; Son, J.; Xu, H. X.; Nam, J. M. Hot- electron-mediated photochemical reactions: Principles, recent advances, and challenges. Adv. Opt. Mater. 2017, 5, 1700004.

5

Sun, M. T.; Xu, H. X. A novel application of plasmonics: Plasmon-driven surface-catalyzed reactions. Small 2012, 8, 2777-2786.

6

Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 2014, 8, 95-103.

7

Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett. 2013, 13, 240-247.

8

Christopher, P.; Xin, H. L.; Marimuthu, A.; Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 2012, 11, 1044-1050.

9

Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon- induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25-34.

10

Sundaramurthy, A.; Schuck, P. J.; Conley, N. R.; Fromm, D. P.; Kino, G. S.; Moerner, W. E. Toward nanometer-scale optical photolithography:   Utilizing the near-field of bowtie optical nanoantennas. Nano Lett. 2006, 6, 355-360.

11

Ueno, K.; Juodkazis, S.; Shibuya, T.; Yokota, Y.; Mizeikis, V.; Sasaki, K.; Misawa, H. Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source. J. Am. Chem. Soc. 2008, 130, 6928-6929.

12

Ueno, K.; Takabatake, S.; Nishijima, Y.; Mizeikis, V.; Yokota, Y.; Misawa, H. Nanogap-assisted surface plasmon nanolithography. J. Phys. Chem. Lett. 2010, 1, 657-662.

13

Geldhauser, T.; Kolloch, A.; Murazawa, N.; Ueno, K.; Boneberg, J.; Leiderer, P.; Scheer, E.; Misawa, H. Quantitative measurement of the near-field enhancement of nanostructures by two-photon polymerization. Langmuir 2012, 28, 9041-9046.

14

Gruber, C.; Hirzer, A.; Schmidt, V.; Trügler, A.; Hohenester, U.; Ditlbacher, H.; Hohenau, A.; Krenn, J. R. Imaging nanowire plasmon modes with two-photon polymerization. Appl. Phys. Lett. 2015, 106, 081101.

15

Kim, N. H.; Meinhart, C. D.; Moskovits, M. Plasmon-mediated reduction of aqueous platinum ions: The competing roles of field enhancement and hot charge carriers. J. Phys. Chem. C 2016, 120, 6750-6755.

16

Govorov, A. O.; Richardson, H. H. Generating heat with metal nanoparticles. Nano Today 2007, 2, 30-38.

17

Gonçalves, M.; Trigo, I.; Dias, R.; Costa, M. R. Kinetic modeling of the molecular architecture of cross-linked copolymers synthesized by controlled radical polymerization techniques. Macromol. Symp. 2010, 291-292, 239-250.

18

Deeb, C.; Ecoffet, C.; Bachelot, R.; Plain, J.; Bouhelier, A.; Soppera, O. Plasmon-based free-radical photopolymerization: Effect of diffusion on nanolithography processes. J. Am. Chem. Soc. 2011, 133, 10535-10542.

19

Deeb, C.; Zhou, X.; Plain, J.; Wiederrecht, G. P.; Bachelot, R.; Russell, M.; Jain, P. K. Size dependence of the plasmonic near-field measured via single-nanoparticle photoimaging. J. Phys. Chem. C 2013, 117, 10669-10676.

20

Stamplecoskie, K. G.; Pacioni, N. L.; Larson, D.; Scaiano, J. C. Plasmon-mediated photopolymerization maps plasmon fields for silver nanoparticles. J. Am. Chem. Soc. 2011, 133, 9160-9163.

21

Chen, Y. Q.; Bi, K. X.; Wang, Q. J.; Zheng, M. J.; Liu, Q.; Han, Y. X.; Yang, J. B.; Chang, S. L.; Zhang, G. H.; Duan, H. G. Rapid focused ion beam milling based fabrication of plasmonic nanoparticles and assemblies via "sketch and peel" strategy. ACS Nano 2016, 10, 11228-11236.

22

Chen, Y. Q.; Xiang, Q.; Li, Z. Q.; Wang, Y. S.; Meng, Y. H.; Duan, H. G. "Sketch and peel" lithography for high-resolution multiscale patterning. Nano Lett. 2016, 16, 3253-3259.

23

Sakamoto, T.; Kawaura, H.; Baba, T.; Iizuka, T. Direct observation of hot-electron energy distribution in silicon metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 1999, 75, 1113-1115.

24

Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370-4379.

File
12274_2018_2163_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 21 June 2018
Revised: 24 July 2018
Accepted: 28 July 2018
Published: 25 August 2018
Issue date: June 2021

Copyright

© The Author(s) 2018

Acknowledgements

Acknowledgements

This research is supported by the Fundamental Research Funds for the Central Universities (Nos. 2042018kf0038 and 2042018kf0254), the National Natural Science Foundation of China (NSFC) (Nos. 21703160 and 11674256), Major State Basic Research Development Program (No. 2015CB932400) and UK EPSRC EP/G060649/1 and EP/L027151/1. We thank Jibo Tang for the preparation of the bowtie-like electrodes.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return