Journal Home > Volume 11 , Issue 12

Developing highly efficient and durable catalysts for future electrochemical and energy applications is one of the main subjects of current studies in renewable energy generation. In the past several years, researchers have developed Pt-based alloy electrocatalyst nanomaterials that exhibit promising electrocatalytic properties for various electrochemical applications. The efficient structural and morphological control of Pt-based alloy materials plays a decisive role in achieving these enhanced electrocatalytic properties. The present review article emphasizes the recent progress and important developments in the synthesis and electrocatalytic applications of Pt-group-based nanodendrite materials. The following review will help the exploration and development of better catalysts for practical applications and aims to elucidate the nanodendrite structure of Pt-group metals.


menu
Abstract
Full text
Outline
About this article

Nanodendrites of platinum-group metals for electrocatalytic applications

Show Author's information Nitin K. Chaudhari1,2,§Jinwhan Joo1,§Hyuk-bu Kwon1Byeongyoon Kim1Ho Young Kim3Sang Hoon Joo3( )Kwangyeol Lee1( )
Department of ChemistryKorea UniversitySeoul02841Republic of Korea
Research Institute of Natural Sciences (RINS)Korea UniversitySeoul02841Republic of Korea
School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea

§ Nitin K. Chaudhari and Jinwhan Joo contributed equally to this work.

Abstract

Developing highly efficient and durable catalysts for future electrochemical and energy applications is one of the main subjects of current studies in renewable energy generation. In the past several years, researchers have developed Pt-based alloy electrocatalyst nanomaterials that exhibit promising electrocatalytic properties for various electrochemical applications. The efficient structural and morphological control of Pt-based alloy materials plays a decisive role in achieving these enhanced electrocatalytic properties. The present review article emphasizes the recent progress and important developments in the synthesis and electrocatalytic applications of Pt-group-based nanodendrite materials. The following review will help the exploration and development of better catalysts for practical applications and aims to elucidate the nanodendrite structure of Pt-group metals.

Keywords: nanostructure, nanodendrites, platinum-group metals, electrochemical and energy conversion

References(206)

1

Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352.

2

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. -M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

3

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

4

Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; Nørskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70–81.

5

Chaudhari, N. K.; Jin, H.; Kim, B.; Lee, K. Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale 2017, 9, 12231–12247.

6

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

7

Park, S.; Shao, Y. Y.; Liu, J.; Wang, Y. Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: Status and perspective. Energy Environ. Sci. 2012, 5, 9331–9334.

8

Yoon, D.; Lee, J.; Seo, B.; Kim, B.; Baik, H.; Joo, S. H.; Lee, K. Cactus-like hollow Cu2–xS@Ru nanoplates as excellent and robust electrocatalysts for the alkaline hydrogen evolution reaction. Small 2017, 13, 1700052.

9

Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catal. 2012, 2, 1765–1772.

10

Kwon, T.; Hwang, H.; Sa, Y. J.; Park, J.; Baik, H.; Joo, S. H.; Lee, K. Cobalt assisted synthesis of IrCu hollow octahedral nanocages as highly active electrocatalysts toward oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1604688.

11

Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.

12

Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.

13

Lv, H. F.; Li, D. G.; Strmcnik, D.; Paulikas, A. P.; Markovic, N. M.; Stamenkovic, V. R. Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction. Nano Energy 2016, 29, 149–165.

14

Yoon, D.; Seo, B.; Lee, J.; Nam, K. S.; Kim, B.; Park, S.; Baik, H.; Joo, S. H.; Lee, K. Facet-controlled hollow Rh2S3 hexagonal nanoprisms as highly active and structurally robust catalysts toward hydrogen evolution reaction. Energy Environ. Sci. 2016, 9, 850–856.

15

Yin, H. J.; Zhao, S. L.; Zhao, K.; Muqsit, A.; Tang, H. J.; Chang, L.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 2015, 6, 6430.

16

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

17

Osgood, H.; Devaguptapu, S. V.; Xu, H.; Cho, J.; Wu, G. Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today 2016, 11, 601–625.

18

Zhang, L. L.; Chang, Q. W.; Chen, H. M.; Shao, M. H. Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy 2016, 29, 198–219.

19

Park, J.; Kim, J.; Yang, Y.; Yoon, D.; Baik, H.; Haam, S.; Yang, H.; Lee, K. RhCu 3D nanoframe as a highly active electrocatalyst for oxygen evolution reaction under alkaline condition. Adv. Sci. 2016, 3, 1500252.

20

Colic, V.; Bandarenka, A. S. Pt alloy electrocatalysts for the oxygen reduction reaction: From model surfaces to nanostructured systems. ACS Catal. 2016, 6, 5378–5385.

21

Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 2014, 5, 3242.

22

Chaudhari, N. K.; Jin, H.; Kim, B.; Baek, D. S.; Joo, S. H.; Lee, K. MXene: An emerging two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A 2017, 5, 24564–24579.

23

Guo, S. J.; Zhang, X.; Zhu, W. L.; He, K.; Su, D.; Mendoza- Garcia, A.; Ho, S. F.; Lu, G.; Sun, S. H. Nanocatalyst superior to Pt for oxygen reduction reactions: The case of core/shell Ag(Au)/CuPd nanoparticles. J. Am. Chem. Soc. 2014, 136, 15026–15033.

24

Xu, G. -R.; Bai, J.; Yao, L.; Xue, Q.; Jiang, J. -X.; Zeng, J. -H.; Chen, Y.; Lee, J. -M. Polyallylamine-functionalized platinum tripods: Enhancement of hydrogen evolution reaction by proton carriers. ACS Catal. 2017, 7, 452–458.

25

Xu, G. -R.; Bai, J.; Jiang, J. -X.; Lee, J. -M.; Chen, Y. Polyethyleneimine functionalized platinum superstructures: Enhancing hydrogen evolution performance by morphological and interfacial control. Chem. Sci. 2017, 8, 8411–8418.

26

Xu, G. -R.; Bai, W.; Zhu, J. -Y.; Liu, F. -Y.; Chen, Y.; Zeng, J. -H.; Jiang, J. -X.; Liu, Z. -H.; Tang, Y. -W.; Lee, J. -M. Morphological and interfacial control of platinum nanostructures for electrocatalytic oxygen reduction. ACS Catal. 2016, 6, 5260–5267.

27

Wang, W.; Lv, F.; Lei, B.; Wan, S.; Luo, M. C.; Guo, S. J. Tuning nanowires and nanotubes for efficient fuel-cell electrocatalysis. Adv. Mater. 2016, 28, 10117–10141.

28

Wang, C.; van der Vliet, D.; More, K. L.; Zaluzec, N. J.; Peng, S.; Sun, S. H.; Daimon, H.; Wang, G. F.; Greeley, J.; Pearson, J. et al. Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett. 2011, 11, 919–926.

29

Guo, S. J.; Zhang, S.; Su, D.; Sun, S. H. Seed-mediated synthesis of core/shell FePtM/FePt (M = Pd, Au) nanowires and their electrocatalysis for oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 13879–13884.

30

Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

31

Shao, M. H.; Chang, Q. W.; Dodelet, J. -P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.

32

Greeley, J.; Stephens, I. E.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

33

Antolini, E. Iridium as catalyst and cocatalyst for oxygen evolution/reduction in acidic polymer electrolyte membrane electrolyzers and fuel cells. ACS Catal. 2014, 4, 1426–1440.

34

You, H. J.; Yang, S. C.; Ding, B. J.; Yang, H. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem. Rev. 2013, 42, 2880–2904.

35

Kakati, N.; Maiti, J.; Lee, S. H.; Jee, S. H.; Viswanathan, B.; Yoon, Y. S. Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt–Ru? Chem. Rev. 2014, 114, 12397–12429.

36

Hsieh, Y. C.; Zhang, Y.; Su, D.; Volkov, V.; Si, R.; Wu, L. J.; Zhu, Y. M.; An, W.; Liu, P.; He, P. et al. Ordered bilayer ruthenium-platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts. Nat. Commun. 2013, 4, 2466.

37

Oh, A.; Kang, D.; Kim, J.; Baik, H.; Lee, K. Synthesis of concave Pt nanocubes and concave Mn-doped Pt nanooctahedra by identifying a synergistic effect among surface binding moieties. Part. Part. Syst. Charact. 2015, 32, 986–990.

38

Jin, H.; Lee, K. W.; Khi, N. T.; An, H.; Park, J.; Baik, H.; Kim, J.; Yang, H.; Lee, K. Rational synthesis of heterostructured M/Pt (M = Ru or Rh) octahedral nanoboxes and octapods and their structure-dependent electrochemical activity toward the oxygen evolution reaction. Small 2015, 11, 4462–4468.

39

Park, J.; Liu, J. Y.; Peng, H. -C.; Figueroa-Cosme, L.; Miao, S.; Choi, S. -I.; Bao, S. X.; Yang, X.; Xia, Y. N. Coating Pt–Ni octahedra with ultrathin Pt shells to enhance the durability without compromising the activity toward oxygen reduction. ChemSusChem 2016, 9, 2209–2215.

40

Bu, L. Z.; Shao, Q. E. B.; Guo, J.; Yao, J. L.; Huang, X. Q. PtPb/PtNi intermetallic core/atomic layer shell octahedra for efficient oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2017, 139, 9576–9582.

41

Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

42

Beermann, V.; Gocyla, M.; Willinger, E.; Rudi, S.; Heggen, M.; Dunin-Borkowski, R. E.; Willinger, M. -G.; Strasser, P. Rh-doped Pt–Ni octahedral nanoparticles: Understanding the correlation between elemental distribution, oxygen reduction reaction, and shape stability. Nano Lett. 2016, 16, 1719–1725.

43

Yang, H. Platinum-based electrocatalysts with core-shell nanostructures. Angew. Chem., Int. Ed. 2011, 50, 2674–2676.

44

Li, Q.; Wu, L. H.; Wu, G.; Su, D.; Lv, H. F.; Zhang, S.; Zhu, W. L.; Casimir, A.; Zhu, H. Y.; Mendoza-Garcia, A. et al. New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett. 2015, 15, 2468–2473.

45

Zhu, H. Y.; Zhang, S.; Su, D.; Jiang, G. M.; Sun, S. H. Surface profile control of FeNiPt/Pt core/shell nanowires for oxygen reduction reaction. Small 2015, 11, 3545–3549.

46

Li, J. R.; Xi, Z.; Pan, Y. -T.; Spendelow, J. S.; Duchesne, P. N.; Su, D.; Li, Q.; Yu, C.; Yin, Z. Y.; Shen, B. et al. Fe stabilization by intermetallic L10-FePt and Pt catalysis enhancement in L10-FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells. J. Am. Chem. Soc. 2018, 140, 2926–2932.

47

Li, F. -M.; Gao, X. -Q.; Li, S. -N.; Chen, Y.; Lee, J. -M. Thermal decomposition synthesis of functionalized PdPt alloy nanodendrites with high selectivity for oxygen reduction reaction. NPG Asia Mater. 2015, 7, e219.

48

Oh, A.; Sa, Y. J.; Hwang, H.; Baik, H.; Kim, J.; Kim, B.; Joo, S. H.; Lee, K. Rational design of Pt–Ni–Co ternary alloy nanoframe crystals as highly efficient catalysts toward the alkaline hydrogen evolution reaction. Nanoscale 2016, 8, 16379–16386.

49

Yang, Y.; Jin, H.; Kim, H. Y.; Yoon, J.; Park, J.; Baik, H.; Joo, S. H.; Lee, K. Ternary dendritic nanowires as highly active and stable multifunctional electrocatalysts. Nanoscale 2016, 8, 15167–15172.

50

Stern, M.; Wissenberg, H. The influence of noble metal alloy additions on the electrochemical and corrosion behavior of titanium. J. Electrochem. Soc. 1959, 106, 759–764.

51

Buchanan, R. A.; Lee, I. -S.; Williams, J. M. Surface modification of biomaterials through noble metal ion implantation. J Biomed. Mater. Res. 1990, 24, 309–318.

52

Ye, E. Y.; Regulacio, M. D.; Zhang, S. -Y.; Loh, X. J.; Han, M. -Y. Anisotropically branched metal nanostructures. Chem. Soc. Rev. 2015, 44, 6001–6017.

53

Lebedeva, N. P.; Koper, M. T. M.; Feliu, J. M.; van Santen, R. A. Role of crystalline defects in electrocatalysis: Mechanism and kinetics of COadlayer oxidation on stepped platinum electrodes. J. Phys. Chem. B 2002, 106, 12938–12947.

54

Tian, N.; Zhou, Z. -Y.; Sun, S. -G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

55

Lim, B.; Jiang, M. J.; Camargo, P. H.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

56

Wang, J.; Zhang, X. -B.; Wang, Z. -L.; Wang, L. -M.; Xing, W.; Liu, X. One-step and rapid synthesis of "clean" and monodisperse dendritic Pt nanoparticles and their high performance toward methanol oxidation and p-nitrophenol reduction. Nanoscale 2012, 4, 1549–1552.

57

Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.

58

Zhang, H.; Jin, H. S.; Xia, Y. N. Noble-metal nanocrystals with concave surfaces: Synthesis and applications. Angew. Chem., Int. Ed. 2012, 51, 7656–7673.

59

Lee, H.; Kim, C.; Yang, S.; Han, J. W.; Kim, J. Shapecontrolled nanocrystals for catalytic applications. Catal. Surv. Asia 2012, 16, 14–27.

60

Zhang, S.; Hao, Y. Z.; Su, D.; Doan-Nguyen, V. V. T.; Wu, Y. T.; Li, J.; Sun, S. H.; Murray, C. B. Monodisperse core/ shell Ni/FePt nanoparticles and their conversion to Ni/Pt to catalyze oxygen reduction. J. Am. Chem. Soc. 2014, 136, 15921–15924.

61

Song, Y. J.; Yang, Y.; Medforth, C. J.; Pereira, E.; Singh, A. K.; Xu, H. F.; Jiang, Y. B.; Brinker, J.; van Swol, F.; Shelnutt, J. A. Controlled synthesis of 2-D and 3-D dendritic platinum nanostructures. J. Am. Chem. Soc. 2004, 126, 635–645.

62

Shen, Q. M.; Jiang, L. P.; Zhang, H.; Min, Q. H.; Hou, W. H.; Zhu, J. -J. Three-dimensional dendritic Pt nanostructures: Sonoelectrochemical synthesis and electrochemical applications. J. Phys. Chem. C 2008, 112, 16385–16392.

63

Wang, S. Y.; Kristian, N.; Jiang, S. P.; Wang, X. Controlled synthesis of dendritic Au@Pt core–shell nanomaterials for use as an effective fuel cell electrocatalyst. Nanotechnology 2009, 20, 025605.

64

Wang, L.; Yamauchi, Y. Block copolymer mediated synthesis of dendritic platinum nanoparticles. J. Am. Chem. Soc. 2009, 131, 9152–9153.

65

Kim, C.; Lee, H. Shape effect of Pt nanocrystals on electrocatalytic hydrogenation. Cat. Commun. 2009, 11, 7–10.

66

Kim, C.; Oh, J. -G.; Kim, Y. -T.; Kim, H.; Lee, H. Platinum dendrites with controlled sizes for oxygen reduction reaction. Electrochem. Commun. 2010, 12, 1596–1599.

67

Patra, S.; Viswanath, B.; Barai, K.; Ravishankar, N.; Munichandraiah, N. High-surface step density on dendritic Pd leads to exceptional catalytic activity for formic acid oxidation. ACS Appl. Mater. Interfaces 2010, 2, 2965–2969.

68

Guo, S. J.; Li, J.; Dong, S. J.; Wang, E. K. Three-dimensional Pt-on-Au bimetallic dendritic nanoparticle: One-step, high-yield synthesis and its bifunctional plasmonic and catalytic properties. J. Phys. Chem. C 2010, 114, 15337–15342.

69

Wang, L.; Wang, H. J.; Nemoto, Y.; Yamauchi, Y. Rapid and efficient synthesis of platinum nanodendrites with high surface area by chemical reduction with formic acid. Chem. Mater. 2010, 22, 2835–2841.

70

Wang, L.; Yamauchi, Y. Autoprogrammed synthesis of triple-layered Au@Pd@Pt core-shell nanoparticles consisting of a Au@Pd bimetallic core and nanoporous Pt shell. J. Am. Chem. Soc. 2010, 132, 13636–13638.

71

Kang, S. W.; Lee, Y. W.; Kim, M.; Hong, J. W.; Han, S. W. One-pot synthesis of carbon-supported dendritic Pd-Au nanoalloys for electrocatalytic ethanol oxidation. Chem. Asian J. 2011, 6, 909–913.

72

Yang, F.; Cheng, K.; Mo, Y. H.; Yu, L. Q.; Yin, J. L.; Wang, G. L.; Cao, D. X. Direct peroxide–peroxide fuel cell—Part 1: The anode and cathode catalyst of carbon fiber cloth supported dendritic Pd. J. Power Sources 2012, 217, 562–568.

73

Kim, H.; Khi, N. T.; Yoon, J.; Yang, H.; Chae, Y.; Baik, H.; Lee, H.; Sohn, J. -H.; Lee, K. Fabrication of hierarchical Rh nanostructures by understanding the growth kinetics of facet-controlled Rh nanocrystals. Chem. Commun. 2013, 49, 2225–2227.

74

Li, C. L.; Yamauchi, Y. Facile solution synthesis of Ag@Pt core–shell nanoparticles with dendritic Pt shells. Phys. Chem. Chem. Phys. 2013, 15, 3490–3496.

75

Wang, L.; Yamauchi, Y. Metallic Nanocages: Synthesis of bimetallic Pt–Pd hollow nanoparticles with dendritic shells by selective chemical etching. J. Am. Chem. Soc. 2013, 135, 16762–16765.

76

Lee, Y. -W.; Kim, B. -Y.; Lee, K. -H.; Song, W. -J.; Cao, G. Z.; Park, K. -W. Synthesis of monodispersed Pt-Ni alloy nanodendrites and their electrochemical properties. Int. J. Electrochem. Sci. 2013, 8, 2305–2312.

77

Wang, C.; Xiao, G. J.; Sui, Y. M.; Yang, X. Y.; Liu, G.; Jia, M. J.; Han, W.; Liu, B. B.; Zou, B. Synthesis of dendritic iridium nanostructures based on the oriented attachment mechanism and their enhanced CO and ammonia catalytic activities. Nanoscale 2014, 6, 15059–15065.

78

Hao, Y. F.; Yang, Y. Y.; Hong, L. J.; Yuan, J. H.; Niu, L.; Gui, Y. H. Facile preparation of ultralong dendritic PtIrTe nanotubes and their high electrocatalytic activity on methanol oxidation. ACS Appl. Mater. Interfaces 2014, 6, 21986–21994.

79

Hong, W.; Wang, J.; Wang, E. K. Dendritic Au/Pt and Au/PtCu nanowires with enhanced electrocatalytic activity for methanol electrooxidation. Small 2014, 10, 3262–3265.

80

Lee, Y. -W. Park, K. -W. Pt–Rh alloy nanodendrites for improved electrocatalytic activity and stability in methanol electrooxidation reaction. Catal. Commun. 2014, 55, 24–28.

81

Khi, N. T.; Yoon, J.; Baik, H.; Lee, S.; Ahn, D. J.; Kwon, S. J.; Lee, K. Twinning boundary-elongated hierarchical Pt dendrites with an axially twinned nanorod core for excellent catalytic activity. CrystEngComm 2014, 16, 8312–8316.

82

Nguyen, T. -T.; Pan, C. -J.; Liu, J. -Y.; Chou, H. -L.; Rick, J.; Su, W. -N.; Hwang, B. -J. Functional palladium tetrapod core of heterogeneous palladium–platinum nanodendrites for enhanced oxygen reduction reaction. J. Power Sources 2014, 251, 393–401.

83

Liu, J.; Wang, X. H.; Lin, Z. J.; Cao, Y.; Zheng, Z. Z.; Zeng, Z. G.; Hu, Z. Y. Shape-controllable pulse electrodeposition of ultrafine platinum nanodendrites for methanol catalytic combustion and the investigation of their local electric field intensification by electrostatic force microscope and finite element method. Electrochim. Acta 2014, 136, 66–74.

84

Cai, Z. -X.; Liu, C. -C.; Wu, G. -H.; Chen, X. -M.; Chen, X. Green synthesis of Pt-on-Pd bimetallic nanodendrites on graphene via in situ reduction, and their enhanced electrocatalytic activity for methanol oxidation. Electrochim. Acta 2014, 127, 377–383.

85

Wang, Y. -X.; Zhou, H. -J.; Sun, P. -C.; Chen, T. -H. Exceptional methanol electro-oxidation activity by bimetallic concave and dendritic Pt–Cu nanocrystals catalysts. J. Power Sources 2014, 245, 663–670.

86

Eid, K.; Wang, H. J.; Malgras, V.; Alothman, Z. A.; Yamauchi, Y.; Wang, L. Trimetallic PtPdRu dendritic nanocages with three-dimensional electrocatalytic surfaces. J. Phys. Chem. C 2015, 119, 19947–19953.

87

Oh, H. -S.; Nong, H. N.; Reier, T.; Gliech, M.; Strasser, P. Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chem. Sci. 2015, 6, 3321–3328.

88

Lee, K. W.; Park, J.; Lee, H.; Yoon, D.; Baik, H.; Haam, S.; Sohn, J. -H.; Lee, K. Morphological evolution of 2D Rh nanoplates to 3D Rh concave nanotents, hierarchically stacked nanoframes, and hierarchical dendrites. Nanoscale 2015, 7, 3460–3465.

89

Wang, D. -Y.; Chou, H. -L.; Cheng, C. -C.; Wu, Y. -H.; Tsai, C. -M.; Lin, H. -Y.; Wang, Y. -L.; Hwang, B. -J.; Chen, C. -C. FePt nanodendrites with high-index facets as active electrocatalysts for oxygen reduction reaction. Nano Energy 2015, 11, 631–639.

90

Khi, N. T.; Park, J.; Baik, H.; Lee, H.; Sohn, J. -H.; Lee, K. Facet-controlled {100}Rh–Pt and {100}Pt–Pt dendritic nanostructures by transferring the {100} facet nature of the core nanocube to the branch nanocubes. Nanoscale 2015, 7, 3941–3946.

91

Yoon, D.; Bang, S.; Jin, H.; Baik, H.; Lee, K. One step synthesis of hierarchical dendritic Pt nanostructures with a concave Pt octahedron building unit via simultaneous vertex growth and facet etching. CrystEngComm 2015, 17, 6848–6851.

92

Yang, T.; Ma, Y. X.; Huang, Q. L.; He, M. S.; Cao, G. J.; Sun, X.; Zhang, D. E.; Wang, M. Y.; Zhao, H.; Tong, Z. W. High durable ternary nanodendrites as effective catalysts for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2016, 8, 23646–23654.

93

Jia, H. M.; Chang, G.; Lei, M.; He, H. P.; Liu, X.; Shu, H. H.; Xia, T. T.; Su, J.; He, H. B. Platinum nanoparticles decorated dendrite-like gold nanostructure on glassy carbon electrodes for enhancing electrocatalysis performance to glucose oxidation. Appl. Surf. Sci. 2016, 384, 58–64.

94

Zhu, J. -Y.; Li, F. -M.; Yao, L.; Han, C. -C.; Li, S. -N.; Zeng, J. -H.; Jiang, J. -X.; Lee, J. -M.; Chen, Y. In situ bubble templateassisted synthesis of phosphonate-functionalized Rh nanodendrites and their catalytic application. CrystEngComm 2017, 19, 2946–2952.

95

Feng, J. -J.; Chen, L. -X.; Ma, X. H.; Yuan, J. H.; Chen, J. -R.; Wang, A. -J.; Xu, Q. -Q. Bimetallic AuPt alloy nanodendrites/ reduced graphene oxide: One-pot ionic liquid-assisted synthesis and excellent electrocatalysis towards hydrogen evolution and methanol oxidation reactions. Int. J. Hydrogen Energy 2017, 42, 1120–1129.

96

Xie, X. -W.; Lv, J. -J.; Liu, L.; Wang, A. -J.; Feng, J. -J.; Xu, Q. -Q. Amino acid-assisted fabrication of uniform dendrite-like PtAu porous nanoclusters as highly efficient electrocatalyst for methanol oxidation and oxygen reduction reactions. Int. J. Hydrogen Energy 2017, 42, 2104–2115.

97

Zhang, K.; Xu, H.; Yan, B.; Wang, J.; Gu, Z. L.; Du, Y. K. Rapid synthesis of dendritic Pt/Pb nanoparticles and their electrocatalytic performance toward ethanol oxidation. Appl. Surf. Sci. 2017, 425, 77–82.

98

Chang, Q. W.; Xu, Y.; Zhu, S. Q.; Xiao, F.; Shao, M. H. Pt-Ni nanourchins as electrocatalysts for oxygen reduction reaction. Front. Energy 2017, 11, 254–259.

99

Feng, J. -J.; Liu, L.; Ma, X. H.; Yuan, J. H.; Wang, A. -J. Ultrasonication-assisted wet-chemical fabrication of uniform AuPt nanodendrites as efficient electrocatalyst for oxygen reduction and hydrogen evolution reactions. Int. J. Hydrogen Energy 2017, 42, 2071–2080.

100

Lu, S. L.; Eid, K.; Deng, Y. Y.; Guo, J.; Wang, L.; Wang, H. J.; Gu, H. W. One-pot synthesis of PtIr tripods with a dendritic surface as an efficient catalyst for the oxygen reduction reaction. J. Mater. Chem. A 2017, 5, 9107–9112.

101

Jia, H. M.; Chang, G.; Shu, H. H.; Xu, M. J.; Wang, X. Y.; Zhang, Z. L.; Liu, X.; He, H. P.; Wang, K.; Zhu, R. Z. et al. Pt nanoparticles modified Au dendritic nanostructures: Facile synthesis and enhanced electrocatalytic performance for methanol oxidation. Int. J. Hydrogen Energy 2017, 42, 22100–22107.

102

Li, H. H.; Zhao, S.; Gong, M.; Cui, C. H.; He, D.; Liang, H. W.; Wu, L.; Yu, S. H. Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation. Angew. Chem., Int. Ed. 2013, 52, 7472–7476.

103

Teng, X. W.; Liang, X. Y.; Maksimuk, S.; Yang, H. Synthesis of porous platinum nanoparticles. Small 2006, 2, 249–253.

104

Lee, H.; Habas, S. E.; Kweskin, S.; Butcher, D.; Somorjai, G. A.; Yang, P. D. Morphological control of catalytically active platinum nanocrystals. Angew. Chem., Int. Ed. 2006, 45, 7824–7828.

105

Rolison, D. R. Catalytic nanoarchitectures—The importance of nothing and the unimportance of periodicity. Science 2003, 299, 1698–1701.

106

Mohanty, A.; Garg, N.; Jin, R. C. A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angew. Chem., Int. Ed. 2010, 49, 4962–4966.

107

Ma, L.; Wang, C. M.; Gong, M.; Liao, L. W.; Long, R.; Wang, J. G.; Wu, D.; Zhong, W.; Kim, M. J.; Chen, Y. X. et al. Control over the branched structures of platinum nanocrystals for electrocatalytic applications. ACS Nano 2012, 6, 9797–9806.

108

Wang, F.; Li, C. H.; Sun, L. -D.; Xu, C. -H.; Wang, J. F.; Yu, J. C.; Yan, C. -H. Porous single-crystalline palladium nanoparticles with high catalytic activities. Angew. Chem., Int. Ed. 2012, 51, 4872–4876.

109

Kuang, Y.; Zhang, Y.; Cai, Z.; Feng, G.; Jiang, Y. Y.; Jin, C. H.; Luo, J.; Sun, X. M. Single-crystalline dendritic bimetallic and multimetallic nanocubes. Chem. Sci. 2015, 6, 7122–7129.

110

Xiong, Y. J.; Chen, J. Y.; Wiley, B.; Xia, Y. N.; Aloni, S.; Yin, Y. D. Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size. J. Am. Chem. Soc. 2005, 127, 7332–7333.

111

Xiong, Y. J.; Chen, J. Y.; Wiley, B.; Xia, Y. N.; Yin, Y. D.; Li, Z. -Y. Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process. Nano Lett. 2005, 5, 1237–1242.

112

Xiong, Y. J.; Cai, H. G.; Wiley, B. J.; Wang, J. G.; Kim, M. J.; Xia, Y. N. Synthesis and mechanistic study of palladium nanobars and nanorods. J. Am. Chem. Soc. 2007, 129, 3665–3675.

113

Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.

114

Chen, J. Y.; Lim, B.; Lee, E. P.; Xia, Y. N. Shapecontrolled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 2009, 4, 81–95.

115

Zheng, H. M.; Smith, R. K.; Jun, Y. W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309–1312.

116

Ortiz, N.; Skrabalak, S. E. Manipulating local ligand environments for the controlled nucleation of metal nanoparticles and their assembly into nanodendrites. Angew. Chem., Int. Ed. 2012, 51, 11757–11761.

117

Oh, A.; Baik, H.; Choi, D. S.; Cheon, J. Y.; Kim, B.; Kim, H.; Kwon, S. J.; Joo, S. H.; Jung, Y.; Lee, K. Skeletal octahedral nanoframe with cartesian coordinates via geometrically precise nanoscale phase segregation in a Pt@Ni core–shell nanocrystal. ACS Nano 2015, 9, 2856–2867.

118

Gong, M. X.; Fu, G. T.; Chen, Y.; Tang, Y. W.; Lu, T. H. Autocatalysis and selective oxidative etching induced synthesis of platinum–copper bimetallic alloy nanodendrites electrocatalysts. ACS Appl. Mater. Interfaces 2014, 6, 7301–7308.

119

Lin, T. -H.; Lin, C. -W.; Liu, H. -H.; Sheu, J. -T.; Hung, W. -H. Potential-controlled electrodeposition of gold dendrites in the presence of cysteine. Chem. Commun. 2011, 47, 2044–2046.

120

Arihara, K.; Ariga, T.; Takashima, N.; Arihara, K.; Okajima, T.; Kitamura, F.; Tokuda, K.; Ohsaka, T. Multiple voltammetric waves for reductive desorption of cysteine and 4-mercaptobenzoic acid monolayers self-assembled on gold substrates. Phys. Chem. Chem. Phys. 2003, 5, 3758–3761.

121

Zhong, X. H.; Feng, Y. Y.; Lieberwirth, I.; Knol, W. Facile synthesis of morphology-controlled platinum nanocrystals. Chem. Mater. 2006, 18, 2468–2471.

122

Zhang, H. -T.; Ding, J.; Chow, G. -M. Morphological control of synthesis and anomalous magnetic properties of 3-D branched Pt nanoparticles. Langmuir 2008, 24, 375–378.

123

Sakai, T.; Alexandridis, P. Mechanism of gold metal ion reduction, nanoparticle growth and size control in aqueous amphiphilic block copolymer solutions at ambient conditions. J. Phys. Chem. B 2005, 109, 7766–7777.

124

Niesz, K.; Grass, M.; Somorjai, G. A. Precise control of the Pt nanoparticle size by seeded growth using EO13PO30EO13 triblock copolymers as protective agents. Nano Lett. 2005, 5, 2238–2240.

125

Meier, M. A. R.; Filali, M.; Gohy, J. F.; Schubert, U. S. Star-shaped block copolymer stabilized palladium nanoparticles for efficient catalytic Heck cross-coupling reactions. J. Mater. Chem. 2006, 16, 3001–3006.

126

Lopez-Sanchez, J. A.; Dimitratos, N.; Hammond, C.; Brett, G. L.; Kesavan, L.; White, S.; Miedziak, P.; Tiruvalam, R.; Jenkins, R. L.; Carley, A. F. et al. Facile removal of stabilizer-ligands from supported gold nanoparticles. Nat. Chem. 2011, 3, 551–556.

127

Ahmadi, T. S.; Wang, Z. L.; Greem, T. C.; Heglein, A.; El-Sayed, M. A. Shape-controlled synthesis of colloidal platinum nanoparticles. Science 1996, 272, 1924–1925.

128

Yoon, D.; Bang, S.; Park, J.; Kim, J.; Baik, H.; Yang, H.; Lee, K. One pot synthesis of octahedral {111} CuIr gradient alloy nanocrystals with a Cu-rich core and an Ir-rich surface and their usage as efficient water splitting catalyst. CrystEngComm 2015, 17, 6843–6847.

129

Quan, Z. W.; Wang, Y. X.; Fang, J. Y. High-index faceted noble metal nanocrystals. Acc. Chem. Res. 2013, 46, 191–202.

130

Mahesh, K. N.; Balaji, R.; Dhathathreyan, K. S. Palladium nanoparticles as hydrogen evolution reaction (HER) electrocatalyst in electrochemical methanol reformer. Int. J. Hydrogen Energy 2016, 41, 46–51.

131

Wang, A. -L.; He, X. -J.; Lu, X. -F.; Xu, H.; Tong, Y. -X.; Li, G. -R. Palladium-cobalt nanotube arrays supported on carbon fiber cloth as high-performance flexible electrocatalysts for ethanol oxidation. Angew. Chem., Int. Ed. 2015, 54, 3669–3673.

132

Klinkova, A.; De Luna, P.; Sargent, E. H.; Kumacheva, E.; Cherepanov, P. V. Enhanced electrocatalytic performance of palladium nanoparticles with high energy surfaces in formic acid oxidation. J. Mater. Chem. A 2017, 5, 11582–11585.

133

Xi, Z.; Li, J. R.; Su, D.; Muzzio, M.; Yu, C.; Li, Q.; Sun, S. H. Stabilizing CuPd nanoparticles via CuPd coupling to WO2.72 nanorods in electrochemical oxidation of formic acid. J. Am. Chem. Soc. 2017, 139, 15191–15196.

134

Yan, X. L.; Meng, F. H.; Xie, Y.; Liu, J. G.; Ding, Y. Direct N2H4/H2O2 fuel cells powered by nanoporous gold leaves. Sci. Reps. 2012, 2, 941.

135

Lee, S. W.; Chen, S.; Sheng, W. C.; Yabuuchi, N.; Kim, Y. -T.; Mitani, T.; Vescovo, E.; Shao-Horn, Y. Roles of surface steps on Pt nanoparticles in electro-oxidation of carbon monoxide and methanol. J. Am. Chem. Soc. 2009, 131, 15669–15677.

136

Housmans, T. H. M.; Koper, M. T. M. Methanol oxidation on stepped Pt[n(111)×(110)] electrodes: A chronoamperometric study. J. Phys. Chem. B 2003, 107, 8557–8567.

137

Khi, N. T.; Baik, H.; Lee, H.; Yoon, J.; Sohn, J. -H.; Lee, K. Rationally synthesized five-fold twinned core–shell Pt3Ni@Rh nanopentagons, nanostars and nanopaddle wheels for selective reduction of a phenyl ring of phthalimide. Nanoscale 2014, 6, 11007–11012.

138

Zhang, J.; Wang, G.; Liao, Z. Q.; Zhang, P. P.; Wang, F. X.; Zhuang, X. D.; Zschech, E.; Feng, X. L. Iridium nanoparticles anchored on 3D graphite foam as a bifunctional electrocatalyst for excellent overall water splitting in acidic solution. Nano Energy 2017, 40, 27–33.

139

Park, J.; Sa, Y. J.; Baik, H.; Kwon, T.; Joo, S. H.; Lee, K. Iridium-based multimetallic nanoframe@nanoframe structure: An efficient and robust electrocatalyst toward oxygen evolution reaction. ACS Nano 2017, 11, 5500–5509.

140

Kong, F. -D.; Zhang, S.; Yin, G. -P.; Zhang, N.; Wang, Z. -B.; Du, C. -Y. Preparation of Pt/Irx(IrO2)10–x bifunctional oxygen catalyst for unitized regenerative fuel cell. J. Power Sources 2012, 210, 321–326.

141

Mamaca, N.; Mayousse, E.; Arrii-Clacens, S.; Napporn, T. W.; Servat, K.; Guillet, N.; Kokoh, K. B. Electrochemical activity of ruthenium and iridium based catalysts for oxygen evolution reaction. Appl. Catal. B-Environ. 2012, 111–112, 376–380.

142

Feng, J. R.; Lv, F.; Zhang, W. Y.; Li, P. H.; Wang, K.; Yang, C.; Wang, B.; Yang, Y.; Zhou, J. H.; Lin, F. et al. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis. Adv. Mater. 2017, 29, 1703798.

143

Lim, B.; Jiang, M. J.; Yu, T.; Camargo, P. H. C.; Xia, Y. N. Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Res. 2010, 3, 69–80.

144

Wang, J. J.; Yin, G. P.; Shao, Y. Y.; Zhang, S.; Wang, Z. B.; Gao, Y. Z. Effect of carbon black support corrosion on the durability of Pt/C catalyst. J. Power Sources 2007, 171, 331–339.

145

Antolini, E. Structural parameters of supported fuel cell catalysts: The effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance. Appl. Catal. B: Environ. 2016, 181, 298–313.

146

Kang, Y. Q.; Li, F. M.; Li, S. N.; Jin, P. J.; Zeng, J. H.; Jiang, J. X.; Chen, Y. Unexpected catalytic activity of rhodium nanodendrites with nanosheet subunits for methanol electrooxidation in an alkaline medium. Nano Res. 2016, 9, 3893–3902.

147

Yuan, Q.; Zhou, Z. Y.; Zhuang, J.; Wang, X. Tunable aqueous phase synthesis and shape-dependent electrochemical properties of rhodium nanostructures. Inorg. Chem. 2010, 49, 5515–5521.

148

Xie, S. F.; Liu, X. Y.; Xi, Y. N. Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties. Nano Res. 2015, 8, 82–96.

149

Yu, N. -F.; Tian, N.; Zhou, Z. -Y.; Huang, L.; Xiao, J.; Wen, Y. -H.; Sun, S. -G. Electrochemical synthesis of tetrahexahedral rhodium nanocrystals with extraordinarily high surface energy and high electrocatalytic activity. Angew. Chem., Int. Ed. 2014, 53, 5097–5101.

150

Zhang, Z. -P.; Zhu, W.; Yan, C. -H.; Zhang, Y. -W. Selective synthesis of rhodium-based nanoframe catalysts by chemical etching of 3d metals. Chem. Commun. 2015, 51, 3997–4000.

151

Zhang, H.; Li, W. Y.; Jin, M. S.; Zeng, J.; Yu, T.; Yang, D. R.; Xia, Y. N. Controlling the morphology of rhodium nanocrystals by manipulating the growth kinetics with a syringe pump. Nano Lett. 2011, 11, 898–903.

152

Liu, H. -M.; Han, S. -H.; Zhao, Y.; Zhu, Y. -Y.; Tian, X. -L.; Zeng, J. -H.; Jiang, J. -X.; Xia, B. Y.; Chen, Y. Surfactantfree atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction. J. Mater. Chem. A 2018, 6, 3211–3217.

153

Chen, Q. L.; Zhang, J. W.; Jia, Y. Y.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances. Nanoscale 2014, 6, 7019–7024.

154

Zhu, C. Z.; Du, D.; Eychmüller, A.; Lin, Y. H. Engineering ordered and nonordered porous noble metal nanostructures: Synthesis, assembly, and their applications in electrochemistry. Chem. Rev. 2015, 115, 8896–8943.

155

Hunt, S. T.; Milina, M.; Alba-Rubio, A. C.; Hendon, C. H.; Dumesic, J. A.; Román-Leshkov, Y. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 2016, 352, 974–978.

156

Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Nørskov, J. K. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem., Int. Ed. 2006, 45, 2897–2901.

157

Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zett, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

158

Wu, Y. E.; Wang, D. S.; Chen, X. B.; Zhou, G.; Yu, R.; Li, Y. D. Defect-dominated shape recovery of nanocrystals: A new strategy for trimetallic catalysts. J. Am. Chem. Soc. 2013, 135, 12220–12223.

159

Gan, L.; Heggen, M.; O'Malley, R.; Theobald, B.; Strasser, P. Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. Nano Lett. 2013, 13, 1131–1138.

160

Yang, T.; Cao, G. J.; Huang, Q. L.; Ma, Y. X.; Wan, S.; Zhao, H.; Li, N.; Yin, F. J.; Sun, X.; Zhang, D. E. et al. Truncated octahedral platinum–nickel–iridium ternary electro-catalyst for oxygen reduction reaction. J. Power Sources 2015, 291, 201–208.

161

Arán-Ais, R. M.; Dionigi, F.; Merzdorf, T.; Gocyla, M.; Heggen, M.; Dunin-Borkowski, R. E.; Gliech, M.; Solla-Gullón, J.; Herrero, E.; Feliu, J. M. et al. Elemental anisotropic growth and atomic-scale structure of shapecontrolled octahedral Pt–Ni–Co alloy nanocatalysts. Nano Lett. 2015, 15, 7473–7480.

162

Choi, S. -I.; Shao, M. H.; Lu, N.; Ruditskiy, A.; Peng, H. -C.; Park, J.; Guerrero, S.; Wang, J. G.; Kim, M. J.; Xia, Y. N. Synthesis and characterization of Pd@Pt–Ni core–shell octahedra with high activity toward oxygen reduction. ACS Nano 2014, 8, 10363–10371.

163

Zhao, X.; Chen, S.; Fang, Z. C.; Ding, J.; Sang, W.; Wang, Y. C.; Zhao, J.; Peng, Z. M.; Zeng, J. Octahedral Pd@Pt1.8Ni core–shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 2804–2807.

164

Yang, T.; Ma, Y. X.; Huang, Q. L.; Cao, G. J. Palladium–iridium nanocrystals for enhancement of electrocatalytic activity toward oxygen reduction reaction. Nano Energy 2016, 19, 257–268.

165

Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 2007, 315, 220–222.

166

Suntivich, J.; Xu, Z. C.; Carlton, C. E.; Kim, J.; Han, B. H.; Lee, S. W.; Bonnet, N.; Marzari, N.; Allard, L. F.; Gasteiger, H. A. et al. Surface composition tuning of Au–Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation. J. Am. Chem. Soc. 2013, 135, 7985–7991.

167

Yoon, J.; Baik, H.; Lee, S.; Kwon, S. J.; Lee, K. One-pot synthesis of ultralong coaxial Au@Pt nanocables with numerous highly catalytically active perpendicular twinning boundaries and Au@Pt core–shell bead structures. Nanoscale 2014, 6, 6434–6439.

168

Bian, T.; Zhang, H.; Jiang, Y. Y.; Jin, C. H.; Wu, J. B.; Yang, H.; Yang, D. R. Epitaxial growth of twinned Au–Pt core–shell star-shaped decahedra as highly durable electrocatalysts. Nano Lett. 2015, 15, 7808–7815.

169

Zhang, L.; Yu, S. N.; Zhang, J. J.; Gong, J. L. Porous single-crystalline AuPt@Pt bimetallic nanocrystals with high mass electrocatalytic activities. Chem. Sci. 2016, 7, 3500–3505.

170

Dutta, S.; Ray, C.; Sarkar, S.; Roy, A.; Sahoo, R.; Pal, T. Facile synthesis of bimetallic Au-Pt, Pd-Pt, and Au-Pd nanostructures: Enhanced catalytic performance of Pd-Pt analogue towards fuel cell application and electrochemical sensing. Electrochim. Acta 2015, 180, 1075–1084.

171

Lv, H. F.; Xi, Z.; Chen, Z. Z.; Guo, S. J.; Yu, Y. S.; Zhu, W. L.; Li, Q.; Zhang, X.; Pan, M.; Lu, G. et al. A new core/shell NiAu/Au nanoparticle catalyst with Pt-like activity for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 5859–5862.

172

Sun, X. L.; Li, D. G.; Guo, S. J.; Zhu, W. L.; Sun, S. H. Controlling core/shell Au/FePt nanoparticle electrocatalysis via changing the core size and shell thickness. Nanoscale 2016, 8, 2626–2631.

173

Xi, Z.; Lv, H. F.; Erdosy, D. P.; Su, D.; Li, Q.; Yu, C.; Li, J. R.; Sun, S. H. Atomic scale deposition of Pt around Au nanoparticles to achieve much enhanced electrocatalysis of Pt. Nanoscale 2017, 9, 7745–7749.

174

Min, M.; Kim, C.; Yang, Y. I.; Yi, J.; Lee, H. Surfacespecific overgrowth of platinum on shaped gold nanocrystals. Phys. Chem. Chem. Phys. 2009, 11, 9759–9765.

175

Guo, S. J.; Wang, L.; Dong, S. J.; Wang, E. K. A novel urchinlike gold/platinum hybrid nanocatalyst with controlled size. J. Phys. Chem. C 2008, 112, 13510–13515.

176

Fu, G. T.; Liu, C.; Wu, R.; Chen, Y.; Zhu, X. S.; Sun, D. M.; Tang, Y. W.; Lu, T. H. L-Lysine mediated synthesis of platinum nanocuboids and their electrocatalytic activity towards ammonia oxidation. J. Mater. Chem. A 2014, 2, 17883–17888.

177

Chaudhari, N. K.; Kim, M. -S.; Bae, T. -S.; Yu, J. -Y. Hematite (a-Fe2O3) nanoparticles on vulcan carbon as an ultrahigh capacity anode material in lithium ion battery. Electrochim. Acta 2013, 114, 60–67.

178

Fu, G. T.; Jiang, X.; Wu, R.; Wei, S. H.; Sun, D. M.; Tang, Y. W.; Lu, T. H.; Chen, Y. Arginine-assisted synthesis and catalytic properties of single-crystalline palladium tetrapods. ACS Appl. Mater. Inter. 2014, 6, 22790–22795.

179

Sabatier, P. Hydrogénation and déhydrogénation by catalysis. Ber. Dtsch. Chem. Ges. 1911, 44, 1984–2001.

180

Antolini, E.; Salgado, J. R. C.; Gonzalez, E. R. The methanol oxidation reaction on platinum alloys with the first row transition metals: The case of Pt–Co and–Ni alloy electrocatalysts for DMFCs: A short review. Appl. Catal. B: Environ. 2006, 63, 137–149.

181

Bagotzky, V. S.; Vassiliev, Y. B.; Khazova, O. A. Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic compounds on platinum group metals. J. Electroanal. Chem. 1977, 81, 229–238.

182

Parsons, R.; VanderNoot, T. The oxidation of small organic molecules: A survey of recent fuel cell related research. J. Electroanal. Chem. 1988, 257, 9–45.

183

Ozoemena, K. I. Nanostructured platinum-free electrocatalysts in alkaline direct alcohol fuel cells: Catalyst design, principles and applications. RSC Adv. 2016, 6, 89523–89550.

184

Abd-El-Latif, A. A.; Baltruschat, H. Formation of methylformate during methanol oxidation revisited: The mechanism. J. Electroanal. Chem. 2011, 662, 204–212.

185

Cao, D.; Lu, G. Q.; Wieckowski, A.; Wasileski, S. A.; Neurock, M. Mechanisms of methanol decomposition on platinum: A combined experimental and ab initio approach. J. Phys. Chem. B 2005, 109, 11622–11633.

186

Jiang, K. Z.; Zhao, D. D.; Guo, S. J.; Zhang, X.; Zhu, X.; Guo, J.; Lu, G.; Huang, X. Q. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires. Adv. Sci. 2017, 3, e1601705.

187

Du, X. W.; Luo, S. P.; Du, H. Y.; Tang, M.; Huang, X. D.; Shen, P. K. Monodisperse and self-assembled Pt-Cu nanoparticles as an efficient electrocatalyst for the methanol oxidation reaction. J. Mater. Chem. A. 2016, 4, 1579–1585.

188

da Silva, E. L.; Cuña, A.; Vega, M. R. O.; Radtke, C.; Machado, G.; Tancredi, N.; de Fraga Malfatti, C. Influence of the support on PtSn electrocatalysts behavior: Ethanol electro-oxidation performance and in-situ ATR-FTIRS studies. Appl. Catal. B: Environ. 2016, 193, 170–179.

189

Narayanamoorthy, B.; Datta, K. K. R.; Eswaramoorthy, M.; Balaji, S. Highly active and stable Pt3Rh nanoclusters as supportless electrocatalyst for methanol oxidation in direct methanol fuel cells. ACS Catal. 2014, 4, 3621–3629.

190

Zhang, Y.; Janyasupab, M.; Liu, C. -W.; Li, X. X.; Xu, J. Q.; Liu, C. -C. Three dimensional PtRh alloy porous nanostructures: Tuning the atomic composition and controlling the morphology for the application of direct methanol fuel cells. Adv. Funct. Mater. 2012, 22, 3570–3575.

191

Lu, L. F.; Chen, S. T.; Thota, S.; Wang, X. D.; Wang, Y. C.; Zou, S. H.; Fan, J.; Zhao, J. Composition controllable synthesis of PtCu nanodendrites with efficient electrocatalytic activity for methanol oxidation induced by high index surface and electronic interaction. J. Phys. Chem. C 2017, 121, 19796–19806.

192

Guo, L.; Huang, L. -B.; Jiang, W. -J.; Wei, Z. -D.; Wan, L. -J.; Hu, J. -S. Tuning the branches and composition of PtCu nanodendrites through underpotential deposition of Cu towards advanced electrocatalytic activity. J. Mater. Chem. A 2017, 5, 9014–9021.

193

Xiong, Y. L.; Ma, Y. L.; Lin, Z. Q.; Xu, Q. F.; Yan, Y. C.; Zhang, H.; Wu, J. B.; Yang, D. R. Facile synthesis of PtCu3 alloy hexapods and hollow nanoframes as highly active electrocatalysts for methanol oxidation. CrystEngComm 2016, 18, 7823–7830.

194

Xia, B. Y.; Wu, H. B.; Li, N.; Yan, Y.; Lou, X. W.; Wang, X. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 3797–3801.

195

Zhang, X.; Tsang, K. -Y.; Chan, K. -Y. Electrocatalytic properties of supported platinum–cobalt nanoparticles with uniform and controlled composition. J. Electroanal. Chem. 2004, 573, 1–9

196

Wang, D. -W.; Su, D. S. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 576–591.

197

Zhang, J. T.; Xia, Z. H.; Dai, L. M. Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 2015, 1, e1500564.

198

Wang, C.; Chi, M. F.; Wang, G. F.; van der Vliet, D.; Li, D. G.; More, K.; Wang, H. H.; Schlueter, J. A.; Markovic, N. M.; Stamenkovic, V. R. Correlation between surface chemistry and electrocatalytic properties of monodisperse PtxNi1–x nanoparticles. Adv. Funct. Mater. 2011, 21, 147–152.

199

Fu, S. F.; Zhu, C. Z.; Shi, Q. R.; Xia, H. B.; Du, D.; Lin, Y. H. Highly branched PtCu bimetallic alloy nanodendrites with superior electrocatalytic activities for oxygen reduction reactions. Nanoscale 2016, 8, 5076–5081.

200

Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. -Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

201

Fuentes, R. E.; Colón-Mercado, H. R.; Martínez-Rodríguez, M. J. Pt-Ir/TiC electrocatalysts for PEM fuel cell/electrolyzer process. J. Electrochem. Soc. 2014, 161, F77–F82.

202

Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Core–shell compositional fine structures of dealloyed PtxNi1–x nanoparticles and their impact on oxygen reduction catalysis. Nano Lett. 2012, 12, 5423–5430.

203

Fan, Z. X.; Luo, Z. M.; Huang, X.; Li, B.; Chen, Y.; Wang, J.; Hu, Y. L.; Zhang, H. Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 1414–1419.

204

Rezaei, B.; Mokhtarianpour, M.; Ensafi, A. A. Fabricated of bimetallic Pd/Pt nanostructure deposited on copper nanofoam substrate by galvanic replacement as an effective electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 2015, 40, 6754–6762.

205

Park, J.; Kabiraz, M. K.; Kwon, H.; Park, S.; Baik, H.; Choi, S. I.; Lee, K. Radially phase segregated PtCu@PtCuNi dendrite@frame nanocatalyst for the oxygen reduction reaction. ACS Nano 2017, 11, 10844–10851.

206

Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. -Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 May 2018
Revised: 29 June 2018
Accepted: 28 July 2018
Published: 14 August 2018
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer‐Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the National Research Foundation of Korea with grant Nos. NRF-20100020209 and NRF-2017R1A2B3005682. The authors also thank to Korea University Future Research Grand for financial support. S. H. J. and H. Y. K. were supported by the NRF of Korea (No. NRF-2017R1A2B2008464).

Return