Journal Home > Volume 11 , Issue 12

A systematic study of the luminescence properties of monodisperse β-NaYF4: 20% Yb3+, 2% Er3+ upconversion nanoparticles (UCNPs) with sizes ranging from 12-43 nm is presented utilizing steady-state and time-resolved fluorometry. Special emphasis was dedicated to the absolute quantification of size- and environment-induced quenching of upconversion luminescence (UCL) by high-energy O-H and C-H vibrations from solvent and ligand molecules at different excitation power densities (P). In this context, the still-debated population pathways of the 4F9/2 energy level of Er3+ were examined. Our results highlight the potential of particle size and P value for color tuning based on the pronounced near-infrared emission of 12 nm UCNPs, which outweighs the red Er3+ emission under "strongly quenched" conditions and accounts for over 50% of total UCL in water. Because current rate equation models do not include such emissions, the suitability of these models for accurately simulating all (de)population pathways of small UCNPs must be critically assessed. Furthermore, we postulate population pathways for the 4F9/2 energy level of Er3+, which correlate with the size-, environment-, and P-dependent quenching states of the higher Er3+ energy levels.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Particle-size-dependent upconversion luminescence of NaYF4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities

Show Author's information Marco Kraft1Christian Würth1Verena Muhr2Thomas Hirsch2Ute Resch-Genger1( )
Federal Institute for Materials Research and Testing (BAM)Division 1.2 BiophotonicsRichard-Willstaetter-Str. 1112489Berlin, Germany
Institute of Analytical ChemistryChemo- and BiosensorsUniversity of Regensburg93040Regensburg, Germany

Abstract

A systematic study of the luminescence properties of monodisperse β-NaYF4: 20% Yb3+, 2% Er3+ upconversion nanoparticles (UCNPs) with sizes ranging from 12-43 nm is presented utilizing steady-state and time-resolved fluorometry. Special emphasis was dedicated to the absolute quantification of size- and environment-induced quenching of upconversion luminescence (UCL) by high-energy O-H and C-H vibrations from solvent and ligand molecules at different excitation power densities (P). In this context, the still-debated population pathways of the 4F9/2 energy level of Er3+ were examined. Our results highlight the potential of particle size and P value for color tuning based on the pronounced near-infrared emission of 12 nm UCNPs, which outweighs the red Er3+ emission under "strongly quenched" conditions and accounts for over 50% of total UCL in water. Because current rate equation models do not include such emissions, the suitability of these models for accurately simulating all (de)population pathways of small UCNPs must be critically assessed. Furthermore, we postulate population pathways for the 4F9/2 energy level of Er3+, which correlate with the size-, environment-, and P-dependent quenching states of the higher Er3+ energy levels.

Keywords: nanoparticle, upconversion, water, quenching, diameter, cyclohexane

References(57)

1

Wilhelm, S. Perspectives for upconverting nanoparticles. ACS Nano 2017, 11, 10644-10653.

2

Pichaandi, J.; Boyer, J. C.; Delaney, K. R.; van Veggel, F. C. J. M. Two-photon upconversion laser (scanning and wide- field) microscopy using Ln3+-doped NaYF4 upconverting nanocrystals: A critical evaluation of their performance and potential in bioimaging. J. Phys. Chem. C 2011, 115, 19054-19064.

3

Yang, Y. M.; Shao, Q.; Deng, R. R.; Wang, C.; Teng, X.; Cheng, K.; Cheng, Z.; Huang, L.; Liu, Z.; Liu, X. G. et al. In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 3125-3129.

4

Zhan, Q. Q.; Qian, J.; Liang, H. J.; Somesfalean, G.; Wang, D.; He, S. L.; Zhang, Z. G.; Andersson-Engels, S. Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. ACS Nano 2011, 5, 3744-3757.

5

Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763-775.

6

Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808-5829.

7

Xu, C. T.; Zhan, Q. Q.; Liu, H. C.; Somesfalean, G.; Qian, J.; He, S. L.; Andersson-Engels, S. Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges. Laser Photonics Rev. 2013, 7, 663-697.

8

Resch-Genger, U.; Gorris, H. H. Perspectives and challenges of photon-upconversion nanoparticles - Part I: Routes to brighter particles and quantitative spectroscopic studies. Anal. Bioanal. Chem. 2017, 409, 5855-5874.

9

Gorris, H. H.; Resch-Genger, U. Perspectives and challenges of photon-upconversion nanoparticles - Part Ⅱ: Bioanalytical applications. Anal. Bioanal. Chem. 2017, 409, 5875-5890.

10

Menyuk, N.; Dwight, K.; Pierce, J. W. NaYF4: Yb, Er—An efficient upconversion phosphor. Appl. Phys. Lett. 1972, 21, 159-161.

11

Pierce, J. W.; Delaney, E. J.; Dwight, K.; Menyuk, N. Preparation of infrared to visible upconversion phosphors based on hexagonal NaYF4. Abstr. Pap. Am. Chem. Soc. 1972, 164, 18.

12

Fischer, S.; Bronstein, N. D.; Swabeck, J. K.; Chan, E. M.; Alivisatos, A. P. Precise tuning of surface quenching for luminescence enhancement in core-shell lanthanide-doped nanocrystals. Nano Lett. 2016, 16, 7241-7247.

13

Xiang, G. T.; Zhang, J. H.; Hao, Z. D.; Zhang, X.; Pan, G. H.; Luo, Y. S.; Lu, W.; Zhao, H. F. Importance of suppression of Yb3+ de-excitation to upconversion enhancement in β-NaYF4: Yb3+/Er3+@β-NaYF4 sandwiched structure nanocrystals. Inorg. Chem. 2015, 54, 3921-3928.

14

Hossan, M. Y.; Hor, A.; Luu, Q.; Smith, S. J.; May, P. S.; Berry, M. T. Explaining the nanoscale effect in the upconversion dynamics of β-NaYF4: Yb3+, Er3+ core and core-shell nanocrystals. J. Phys. Chem. C 2017, 121, 16592-16606.

15

Chen, G. Y.; Shen, J.; Ohulchanskyy, T. Y.; Patel, N. J.; Kutikov, A.; Li, Z. P.; Song, J.; Pandey, R. K.; Agren, H.; Prasad, P. N. et al. (α-NaYbF4: Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 2012, 6, 8280-8287.

16

Arppe, R.; Hyppänen, I.; Perälä, N.; Peltomaa, R.; Kaiser, M.; Würth, C.; Christ, S.; Resch-Genger, U.; Schaferling, M.; Soukka, T. Quenching of the upconversion luminescence of NayF4: Yb3+, Er3+ and NaYF4: Yb3+, Tm3+ nanophosphors by water: The role of the sensitizer Yb3+ in non-radiative relaxation. Nanoscale 2015, 7, 11746-1157.

17

Scatena, L. F.; Brown, M. G.; Richmond, G. L. Water at hydrophobic surfaces: Weak hydrogen bonding and strong orientation effects. Science 2001, 292, 908-912.

18

Hyppänen, I.; Höysniemi, N.; Arppe, R.; Schäferling, M.; Soukka, T. Environmental impact on the excitation path of the red upconversion emission of nanocrystalline NaYF4: Yb3+, Er3+. J. Phys. Chem. C 2017, 121, 6924-6929.

19

Xue, X. J.; Uechi, S.; Tiwari, R. N.; Duan, Z. C.; Liao, M. S.; Yoshimura, M.; Suzuki, T.; Ohishi, Y. Size-dependent upconversion luminescence and quenching mechanism of LiYF4: Er3+/Yb3+ nanocrystals with oleate ligand adsorbed. Opt. Mater. Express 2013, 3, 989-999.

20

Muhr, V.; Würth, C.; Kraft, M.; Buchner, M.; Baeumner, A. J.; Resch-Genger, U.; Hirsch, T. Particle-size-dependent Förster resonance energy transfer from upconversion nanoparticles to organic dyes. Anal. Chem. 2017, 89, 4868- 4874.

21

Lim, S. F.; Ryu, W. S.; Austin, R. H. Particle size dependence of the dynamic photophysical properties of NaYF4: Yb, Er nanocrystals. Opt. Express 2010, 18, 2309-2316.

22

Johnson, N. J. J.; He, S.; Diao, S.; Chan, E. M.; Dai, H. J.; Almutairi, A. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 2017, 139, 3275-3282.

23

Gargas, D. J.; Chan, E. M.; Ostrowski, A. D.; Aloni, S.; Altoe, M. V. P.; Barnard, E. S.; Sanii, B.; Urban, J. J.; Milliron, D. J.; Cohen, B. E. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol. 2014, 9, 300-305.

24

Zhao, J. B.; Lu, Z. D.; Yin, Y. D.; McRae, C.; Piper, J. A.; Dawes, J. M.; Jin, D. Y.; Goldys, E. M. Upconversion luminescence with tunable lifetime in NaYF4: Yb, Er nanocrystals: Role of nanocrystal size. Nanoscale 2013, 5, 944-952.

25

Yuan, D.; Tan, M. C.; Riman, R. E.; Chow, G. M. Comprehensive study on the size effects of the optical properties of NaYF4: Yb, Er nanocrystals. J. Phys. Chem. C 2013, 117, 13297-13304.

26

Anderson, R. B.; Smith, S. J.; May, P. S.; Berry, M. T. Revisiting the NIR-to-visible upconversion mechanism in β-NaYF4: Yb3+, Er3+. J. Phys. Chem. Lett. 2014, 5, 36-42.

27

Berry, M. T.; May, P. S. Disputed mechanism for NIR- to-red upconversion luminescence in NaYF4: Yb3+, Er3+. J. Phys. Chem. A 2015, 119, 9805-9811.

28

Jung, T.; Jo, H. L.; Nam, S. H.; Yoo, B.; Cho, Y.; Kim, J.; Kim, H. M.; Hyeon, T.; Suh, Y. D.; Lee, H. et al. The preferred upconversion pathway for the red emission of lanthanide-doped upconverting nanoparticles, NaYF4: Yb3+, Er3+. Phys. Chem. Chem. Phys. 2015, 17, 13201-13205.

29

Kaiser, M.; Wurth, C.; Kraft, M.; Hyppänen, I.; Soukka, T.; Resch-Genger, U. Power-dependent upconversion quantum yield of NaYF4: Yb3+, Er3+ nano- and micrometer-sized particles-measurements and simulations. Nanoscale 2017, 9, 10051-10058.

30

Würth, C.; Kaiser, M.; Wilhelm, S.; Grauel, B.; Hirsch, T.; Resch-Genger, U. Excitation power dependent population pathways and absolute quantum yields of upconversion nanoparticles in different solvents. Nanoscale 2017, 9, 4283-4294.

31

Rabouw, F. T.; Meijerink, A. Modeling the cooperative energy transfer dynamics of quantum cutting for solar cells. J. Phys. Chem. C 2015, 119, 2364-2370.

32

Martín-Rodríguez, R.; Rabouw, F. T.; Trevisani, M.; Bettinelli, M.; Meijerink, A. Upconversion dynamics in Er3+-doped Gd2O2S: Influence of excitation power, Er3+ concentration, and defects. Adv. Opt. Mater. 2015, 3, 558-567.

33

Würth, C.; Fischer, S.; Grauel, B.; Alivisatos, A. P.; Resch-Genger, U. Quantum yields, surface quenching, and passivation efficiency for ultrasmall core/shell upconverting nanoparticles. J. Am. Chem. Soc. 2018, 140, 4922-4928.

34

Hudry, D.; Busko, D.; Popescu, R.; Gerthsen, D.; Abeykoon, A. M. M.; Kubel, C.; Bergfeldt, T.; Richards, B. S. Direct evidence of significant cation intermixing in upconverting core@shell nanocrystals: Toward a new crystallochemical model. Chem. Mater. 2017, 29, 9238-9246.

35

Klier, D. T.; Kumke, M. U. Upconversion luminescence properties of NaYF4: Yb: Er nanoparticles codoped with Gd3+. J. Phys. Chem. C 2015, 119, 3363-3373.

36

Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061-1065.

37

Chen, F.; Bu, W. B.; Zhang, S. J.; Liu, X. H.; Liu, J. N.; Xing, H. Y.; Xiao, Q. F.; Zhou, L. P.; Peng, W. J.; Wang, L. Z. et al. Positive and negative lattice shielding effects Co-existing in Gd (Ⅲ) ion doped bifunctional upconversion nanoprobes. Adv. Funct. Mater. 2011, 21, 4285-4294.

38

Wilhelm, S.; Kaiser, M.; Würth, C.; Heiland, J.; Carrillo- Carrion, C.; Muhr, V.; Wolfbeis, O. S.; Parak, W. J.; Resch- Genger, U.; Hirsch, T. Water dispersible upconverting nanoparticles: Effects of surface modification on their luminescence and colloidal stability. Nanoscale 2015, 7, 1403-1410.

39

Päkkila, H.; Yliharsilä, M.; Lahtinen, S.; Hattara, L.; Salminen, N.; Arppe, R.; Lastusaari, M.; Saviranta, P.; Soukka, T. Quantitative multianalyte microarray immunoassay utilizing upconverting phosphor technology. Anal. Chem. 2012, 84, 8628-8634.

40

Wilhelm, S.; del Barrio, M.; Heiland, J.; Himmelstoss, S. F.; Galbán, J.; Wolfbeis, O. S.; Hirsch, T. Spectrally matched upconverting luminescent nanoparticles for monitoring enzymatic reactions. ACS Appl. Mater. Interfaces 2014, 6, 15427-15433.

41

Wilhelm, S.; Hirsch, T.; Patterson, W. M.; Scheucher, E.; Mayr, T.; Wolfbeis, O. S. Multicolor upconversion nanoparticles for protein conjugation. Theranostics 2013, 3, 239-248.

42

Zhao, J. B.; Jin, D. Y.; Schartner, E. P.; Lu, Y. Q.; Liu, Y. J.; Zvyagin, A. V.; Zhang, L. X.; Dawes, J. M.; Xi, P.; Piper, J. A. et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol. 2013, 8, 729-734.

43

Liu, H. C.; Xu, C. T.; Lindgren, D.; Xie, H. Y.; Thomas, D.; Gundlach, C.; Andersson-Engels, S. Balancing power density based quantum yield characterization of upconverting nanoparticles for arbitrary excitation intensities. Nanoscale 2013, 5, 4770-4775.

44

Shan, J. N.; Uddi, M.; Yao, N.; Ju, Y. G. Anomalous Raman scattering of colloidal Yb3+, Er3+ codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence. Adv. Funct. Mater. 2010, 20, 3530-3537.

45

Wang, Y.; Deng, R. R.; Xie, X. J.; Huang, L.; Liu, X. G. Nonlinear spectral and lifetime management in upconversion nanoparticles by controlling energy distribution. Nanoscale 2016, 8, 6666-6673.

46

Cao, T. Y.; Yang, Y.; Gao, Y. A.; Zhou, J.; Li, Z. Q.; Li, F. Y. High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging. Biomaterials 2011, 32, 2959-2968.

47

Ju, Q.; Luo, W. Q.; Liu, Y. S.; Zhu, H. M.; Li, R. F.; Chen, X. Y. Poly (acrylic acid)-capped lanthanide-doped BaFCl nanocrystals: Synthesis and optical properties. Nanoscale 2010, 2, 1208-1212.

48

Guan, Y.; Zhang, Y. J.; Zhou, T.; Zhou, S. Q. Stability of hydrogen-bonded hydroxypropylcellulose/poly(acrylic acid) microcapsules in aqueous solutions. Soft Matter 2009, 5, 842-849.

49

Liu, F.; Ma, E.; Chen, D. Q.; Wang, Y. S.; Yu, Y. L.; Huang, P. Infrared luminescence of transparent glass ceramic containing Er3+: NaYF4 nanocrystals. J. Alloys Compounds 2009, 467, 317-321.

50

Ostrowski, A. D.; Chan, E. M.; Gargas, D. J.; Katz, E. M.; Han, G.; Schuck, P. J.; Milliron, D. J.; Cohen, B. E. Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals. ACS Nano 2012, 6, 2686-2692.

51

Boyer, J. C.; van Veggel, F. C. J. M. Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2010, 2, 1417-1419.

52

Li, X. M.; Shen, D. K.; Yang, J. P.; Yao, C.; Che, R. C.; Zhang, F.; Zhao, D. Y. Successive layer-by-layer strategy for multi-shell epitaxial growth: Shell thickness and doping position dependence in upconverting optical properties. Chem. Mater. 2013, 25, 106-112.

53

Mousavi, M.; Thomasson, B.; Li, M.; Kraft, M.; Würth, C.; Resch-Genger, U.; Andersson-Engels, S. Beam-profile- compensated quantum yield measurements of upconverting nanoparticles. Phys. Chem. Chem. Phys. 2017, 19, 22016- 22022.

54

Homann, C.; Krukewitt, L.; Frenzel, F.; Grauel, B.; Würth, C. NaYF4: Yb, Er/NaYF4 core/shell nanocrystals with high upconversion luminescence quantum yield. Angew. Chem., Int. Ed. 2018, 57, 8765-8769.

55

Würth, C.; Pauli, J.; Lochmann, C.; Spieles, M.; Resch- Genger, U. Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared. Anal. Chem. 2012, 84, 1345-1352.

56

Resch-Genger, U.; Bremser, W.; Pfeifer, D.; Spieles, M.; Hoffmann, A.; DeRose, P. C.; Zwinkels, J. C.; Gauthier, F.; Ebert, B.; Taubert, R. D. et al. State-of-the art comparability of corrected emission spectra. 1. Spectral correction with physical transfer standards and spectral fluorescence standards by expert laboratories. Anal. Chem. 2012, 84, 3889-3898.

57

Ahrar, K.; Gowda, A.; Javadi, S.; Borne, A.; Fox, M.; McNichols, R.; Ahrar, J. U.; Stephens, C.; Stafford, R. J. Preclinical assessment of a 980-nm diode laser ablation system in a large animal tumor model. J. Vascul. Interv. Radiol. 2010, 21, 555-561.

File
12274_2018_2159_MOESM1_ESM.pdf (6.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 April 2018
Revised: 23 July 2018
Accepted: 28 July 2018
Published: 16 August 2018
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

U. R. G. acknowledges financial support by research grants RE 1203/18-1 (German research council; DFG) and RE 1203/20-1 (project NANOHYPE; DFG and M-Eranet) and M. K. from the Ph.D. program of BAM. Moreover, COST Action CM1403, the European upconversion network from the design of photon-upconverting nanomaterials to (biomedical) applications, is gratefully acknowledged.

Return