Journal Home > Volume 11 , Issue 12

When the dimensionality of layered compounds decreases to the physical limit, ultimate two-dimensional (2D) anisotropy and/or quantum confinement effects may lead to extraordinary physicochemical attributes. Here, we report single-layer Rh nanosheets (NSs) exhibiting ultrahigh peroxidase-like activity, far exceeding that of horseradish peroxidase (HRP) and of most known layered nanomaterial-based peroxidase mimics. Considering per NS as an active subunit, the Rh NSs displayed a catalytic rate constant (Kcat) as high as 4.45 × 105 s–1 to H2O2, two orders of magnitude higher than those of HRP and Rh nanoparticles. The high atom efficiency of the Rh NSs can be attributed to the full exposure of surface-active Rh atoms, which greatly facilitates electron transfer and formation of superoxide anions, representing reactive oxygen species in the catalytic process. As a proof-of-concept application, the Rh NSs were successfully used as peroxidase mimics for the colorimetric detection of H2O2 and xanthine, with high sensitivity and selectivity. Moreover, a simple, rapid, and sensitive Rh-based paper sensor for ascorbic acid was also developed. In summary, this work provides a novel example of single-layer metallic NSs for biosensing.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Single-layer Rh nanosheets with ultrahigh peroxidase-like activity for colorimetric biosensing

Show Author's information Shuangfei Cai1,§Wei Xiao1,§Haohong Duan2Xixi Liang3Chen Wang1( )Rong Yang1( )Yadong Li3
CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100190China
Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TAUK
Department of ChemistryTsinghua UniversityBeijing100084China

§Shuangfei Cai and Wei Xiao contributed equally to this work.

Abstract

When the dimensionality of layered compounds decreases to the physical limit, ultimate two-dimensional (2D) anisotropy and/or quantum confinement effects may lead to extraordinary physicochemical attributes. Here, we report single-layer Rh nanosheets (NSs) exhibiting ultrahigh peroxidase-like activity, far exceeding that of horseradish peroxidase (HRP) and of most known layered nanomaterial-based peroxidase mimics. Considering per NS as an active subunit, the Rh NSs displayed a catalytic rate constant (Kcat) as high as 4.45 × 105 s–1 to H2O2, two orders of magnitude higher than those of HRP and Rh nanoparticles. The high atom efficiency of the Rh NSs can be attributed to the full exposure of surface-active Rh atoms, which greatly facilitates electron transfer and formation of superoxide anions, representing reactive oxygen species in the catalytic process. As a proof-of-concept application, the Rh NSs were successfully used as peroxidase mimics for the colorimetric detection of H2O2 and xanthine, with high sensitivity and selectivity. Moreover, a simple, rapid, and sensitive Rh-based paper sensor for ascorbic acid was also developed. In summary, this work provides a novel example of single-layer metallic NSs for biosensing.

Keywords: nanosheets, Rh, nanozymes, peroxidase-like activity, colorimetric detection

References(61)

1

Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

2

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

3

Shi, W. B.; Wang, Q. L.; Long, Y. J.; Cheng, Z. L.; Chen, S. H.; Zheng, H. Z.; Huang, Y. M. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem. Commun. 2011, 47, 6695–6697.

4

Cai, S. F.; Jia, X. H.; Han, Q. S.; Yan, X. Y.; Yang, R.; Wang, C. Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects. Nano Res. 2017, 10, 2056–2069.

5

Liu, B. W.; Huang, Z. C.; Liu, J. W. Boosting the oxidase mimicking activity of nanoceria by fluoride capping: Rivaling protein enzymes and ultrasensitive F- detection. Nanoscale 2016, 8, 13562–13567.

6

Wang, G. L.; Xu, X. F.; Qiu, L.; Dong, Y. M.; Li, Z, J.; Zhang, C. Dual responsive enzyme mimicking activity of AgX (X = Cl, Br, I) nanoparticles and its application for cancer cell detection. ACS Appl. Mater. Interfaces 2014, 6, 6434–6442.

7

Dutta, A. K.; Maji, S. K.; Srivastava, D. N.; Mondal, A.; Biswas, P.; Paul, P.; Adhikary, B. Synthesis of FeS and FeSe nanoparticles from a single source precursor: A study of their photocatalytic activity, peroxidase-like behavior, and electrochemical sensing of H2O2. ACS Appl. Mater. Interfaces 2012, 4, 1919–1927.

8

Tao, Y.; Lin, Y. H.; Huang, Z. Z.; Ren, J. S.; Qu, X. G. Incorporating graphene oxide and gold nanoclusters: A synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv. Mater. 2013, 25, 2594–2599.

9

Lin, Y. H.; Ren, J. S.; Qu, X. G. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Acc. Chem. Res. 2014, 47, 1097–1105.

10

Zhang, Z. J.; Zhang, X. H.; Liu, B. W.; Liu, J. W. Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J. Am. Chem. Soc. 2017, 139, 5412–5419.

11

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

12

Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.

13

Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

14

Chimene, D.; Alge, D. L.; Gaharwar, A. K. Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects. Adv. Mater. 2015, 27, 7261–7284.

15

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

16

Xue, Y. H.; Zhang, Q.; Wang, W. J.; Cao, H.; Yang, Q. H.; Fu, L. Opening two-dimensional materials for energy conversion and storage: A concept. Adv. Energy Mater. 2017, 7, 1602684.

17

Wei, J. P.; Chen, X. L.; Shi, S. G.; Mo, S. G.; Zheng, N. F. An investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures. Nanoscale 2015, 7, 19018–19026.

18

Yan, X.; Song, Y.; Wu, X. L.; Zhu, C. Z.; Su, X. G.; Du, D.; Lin, Y. H. Oxidase-mimicking activity of ultrathin MnO2 nanosheets in colorimetric assay of acetylcholinesterase activity. Nanoscale 2017, 9, 2317–2323.

19

Lin, T. R.; Zhong, L. S.; Guo, L. Q.; Fu, F. F.; Chen, G. N. Seeing the diabetes: Visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 2014, 6, 11856–11862.

20

Lin, T. R.; Zhong, L. S.; Song, Z. P.; Guo, L. Q.; Wu, H. Y.; Guo, Q. Q.; Chen, Y.; Fu, F. F.; Chen, G. N. Visual detection of blood glucose based on peroxidase-like activity of WS2 nanosheets. Biosens. Bioelectron. 2014, 62, 302–307.

21

Wu, X. J.; Chen, T. M.; Wang, J. X. Yang, G. W. Few-layered MoSe2 nanosheets as an efficient peroxidase nanozyme for highly sensitive colorimetric detection of H2O2 and xanthine. J. Mater. Chem. B 2018, 6, 105–111.

22

Chen, T. M.; Wu, X. J.; Wang, J. X.; Yang, G. W. WSe2 few layers with enzyme mimic activity for high-sensitive and high-selective visual detection of glucose. Nanoscale 2017, 9, 11806–11813.

23

Lin, T. R.; Zhong, L. S.; Wang, J.; Guo, L. Q.; Wu, H. Y.; Guo, Q. Q.; Fu, F. F.; Chen, G. N. Graphite-like carbon nitrides as peroxidase mimetics and their applications to glucose detection. Biosens. Bioelectron. 2014, 59, 89–93.

24

Chen, L. J.; Sun, B.; Wang, X. D.; Qiao, F. M.; Ai, S. Y. 2D ultrathin nanosheets of Co-Al layered double hydroxides prepared in L-asparagine solution: Enhanced peroxidase-like activity and colorimetric detection of glucose. J. Mater. Chem. B 2013, 1, 2268–2274.

25

Wang, Y. X.; Zhao, M. T.; Ping, J. F.; Chen, B.; Cao, X. H.; Huang, Y.; Tan, C. L.; Ma, Q. L.; Wu, S. X.; Yu, Y. F. et al. Bioinspired design of ultrathin 2D bimetallic metal-organicframework nanosheets used as biomimetic enzymes. Adv. Mater. 2016, 28, 4149–4155.

26

Cai, S. F.; Han, Q. S.; Qi, C.; Lian, Z.; Jia, X. H.; Yang, R.; Wang, C. Pt74Ag26 nanoparticle-decorated ultrathin MoS2 nanosheets as novel peroxidase mimics for highly selective colorimetric detection of H2O2 and glucose. Nanoscale 2016, 8, 3685–3693.

27

Tian, J. Q.; Liu, Q.; Asiri, A. M.; Qusti, A. H.; Al-Youbi, A. O.; Sun, X. P. Ultrathin graphitic carbon nitride nanosheets: A novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale 2013, 5, 11604–11609.

28

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

29

Duan, H. H.; Yan, N.; Yu, R.; Chang, C. R.; Zhou, G.; Hu, H. S.; Rong, H. P.; Niu, Z. Q.; Mao, J. J.; Asakura, H. et al. Ultrathin rhodium nanosheets. Nat. Commun. 2014, 5, 3093.

30

Sun, P. Z.; Ma, R. Z.; Bai, X. Y.; Wang, K. L.; Zhu, H. W.; Sasaki, T. Single-layer nanosheets with exceptionally high and anisotropic hydroxyl ion conductivity. Sci. Adv. 2017, 3, e1602629.

31

Guo, X. R.; Wang, Y.; Wu, F. Y.; Ni, Y. N.; Kokot, S. A. A colorimetric method of analysis for trace amounts of hydrogen peroxide with the use of the nano-properties of molybdenum disulfide. Analyst 2015, 140, 1119–1126.

32

Wang, X. X.; Wu, Q.; Shan, Z.; Huang, Q. M. BSA-stabilized Au clusters as peroxidase mimetics for use in xanthine detection. Biosens. Bioelectron. 2011, 26, 3614–3619.

33

Ai, L. H.; Li, L. L.; Zhang, C. H.; Fu, J.; Jiang, J. MIL-53(Fe): A metal-organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing. Chem. -Eur. J. 2013, 19, 15105–15108.

34

Song, Y. J.; Wei, W. L.; Qu, X. G. Colorimetric biosensing using smart materials. Adv. Mater. 2011, 23, 4215–4236.

35

Hou, C. P.; Zhu, J.; Liu, C.; Wang, X.; Kuang, Q.; Zheng, L. S. Formaldehyde-assisted synthesis of ultrathin Rh nanosheets for applications in CO oxidation. CrystEngComm 2013, 15, 6127–6130.

36

Zhao, L.; Xu, C. F.; Su, H. F.; Liang, J. H.; Lin, S. C.; Gu, L.; Wang, X. L.; Chen, M.; Zheng, N. F. Single-crystalline rhodium nanosheets with atomic thickness. Adv. Sci. 2015, 2, 1500100.

37

Jang, K.; Kim, H. J.; Son, S. U. Low-temperature synthesis of ultrathin rhodium nanoplates via molecular orbital symmetry interaction between rhodium precursors. Chem. Mater. 2010, 22, 1273–1275.

38

Kibis, L. S.; Stadnichenko, A. I.; Koscheev, S. V.; Zaikovskii, V. I.; Boronin, A. I. XPS study of nanostructured rhodium oxide film comprising Rh4+ species. J. Phys. Chem. C 2016, 120, 19142–19150.

39

Gayen, A.; Priolkar, K. R.; Sarode, P. R.; Jayaram, V.; Hegde, M. S.; Subbanna, G. N.; Emura, S. Ce1–xRhxO2–δ solid solution formation in combustion-synthesized Rh/CeO2 catalyst studied by XRD, TEM, XPS, and EXAFS. Chem. Mater. 2004, 16, 2317–2328.

40

Ni, P. J.; Dai, H. C.; Wang, Y. L.; Sun, Y. J.; Shi, Y.; Hu, J. T.; Li, Z. Visual detection of melamine based on the peroxidase-like activity enhancement of bare gold nanoparticles. Biosens Bioelectron. 2014, 60, 286–291.

41

Chen, S.; Hai, X.; Chen, X. W.; Wang, J. H. In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose. Anal. Chem. 2014, 86, 6689–6694.

42

Fu, Y.; Zhang, H. X.; Dai, S. D.; Zhi, X.; Zhang, J. L.; Li, W. Glutathione-stabilized palladium nanozyme for colorimetric assay of silver(I) ions. Analyst 2015, 140, 6676–6683.

43

Jin, L. H.; Meng, Z.; Zhang, Y. Q.; Cai, S. J.; Zhang, Z. H.; Li, C.; Shang, L.; Shen, Y. H. Ultrasmall Pt nanoclusters as robust peroxidase mimics for colorimetric detection of glucose in human serum. ACS Appl. Mater. Interfaces 2017, 9, 10027–10033.

44

Ye, H. H.; Mohar, J.; Wang, Q. X.; Catalano, M.; Kim, M. J.; Xia, X. H. Peroxidase-like properities of ruthenium nanoframes. Sci. Bull. 2016, 61, 1739–1745.

45

Cui, M. L.; Zhou, J. D.; Zhao, Y.; Song, Q. J. Facile synthesis of iridium nanoparticles with superior peroxidase-like activity for colorimetric determination of H2O2 and xanthine. Sens. Actuators B 2017, 243, 203–210.

46

Choleva, T. G.; Gatselou, V. A.; Tsogas, G. Z.; Giokas, D. L. Intrinsic peroxidase-like activity of rhodium nanoparticles, and their application to the colorimetric determination of hydrogen peroxide and glucose. Microchim. Acta 2018, 185, 22.

47

Yuan, Y.; Yan, N.; Dyson, P. J. Advances in the rational design of rhodium nanoparticle catalysts: Control via manipulation of the nanoparticle core and stabilizer. ACS Catal. 2012, 2, 1057–1069.

48

Shoba, V. M.; Takacs, J. M. Remarkably facile boranepromoted, rhodium-catalyzed asymmetric hydrogenation of tri- and tetrasubstituted alkenes. J. Am. Chem. Soc. 2017, 139, 5740–5743.

49

Ren, X. Y.; Zhang, Z. Y.; Zhang, L.; Wang, Z.; Xia, C. G.; Ding, K. L. Rhodium complex catalyzed hydroformylation of olefins with CO2 and hydrosilane. Angew. Chem., Int. Ed. 2017, 56, 310–313.

50

Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148.

51

Mu, J. S.; Wang, Y.; Zhao, M.; Zhang, L. Intrinsic peroxidaselike activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. 2012, 48, 2540–2542.

52

Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.

53

Ma, M.; Zhang, Y.; Gu, N. Peroxidase-like catalytic activity of cubic Pt nanocrystals. Colloid. Surface. A: Physicochem. Eng. Aspect. 2011, 373, 6–10.

54

Tan, H. L.; Ma, C. J.; Gao, L.; Li, Q.; Song, Y. H.; Xu, F. G.; Wang, T.; Wang, L. Metal-organic framework-derived copper nanoparticle@carbon nanocomposites as peroxidase mimics for colorimetric sensing of ascorbic acid. Chem. -Eur. J. 2014, 20, 16377–16383.

55

Chen, Z. W.; Yin, J. J.; Zhou, Y. T.; Zhang, Y.; Song, L. N.; Song, M. J.; Hu, S. L.; Gu, N. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 2012, 6, 4001–4012.

56

Su, H.; Liu, D. D.; Zhao, M.; Hu, W. L.; Xue, S. S.; Cao, Q.; Le, X. Y.; Ji, L. N.; Mao, Z. W. Dual-enzyme characteristics of polyvinylpyrrolidone-capped iridium nanoparticles and their cellular protective effect against H2O2-induced oxidative damage. ACS Appl. Mater. Interfaces 2015, 7, 8233–8242.

57

Deng, H. H.; Lin, X. L.; Liu, Y. H.; Li, K. L.; Zhang, Q. Q.; Peng, H. P.; Liu, A. L.; Xia, X. H.; Chen, W. Chitosanstabilized platinum nanoparticles as effective oxidase mimics for colorimetric detection of acid phosphatase. Nanoscale 2017, 9, 10292–10300.

58

Zhang, J. W.; Zhang, H. T.; Du, Z. Y.; Wang, X. Q.; Yu, S. H.; Jiang, H. L. Water-stable metal-organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chem. Commun. 2014, 50, 1092–1094.

59

Sun, H. F.; Chao, J.; Zuo, X. L.; Su, S.; Liu, X. F.; Yuwen, L. H.; Fan, C. H.; Wang, L. H. Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Adv. 2014, 4, 27625–27629.

60

Zhou, C. L.; Li, S.; Zhu, W.; Pang, H. J.; Ma, H. Y. A sensor of a polyoxometalate and Au-Pd alloy for simultaneously detection of dopamine and ascorbic acid. Electrochim. Acta. 2013, 113, 454–463.

61

Mi, C. C.; Wang, T. T.; Zeng, P.; Zhao, S.; Wang, N. Z.; Xu, S. K. Determination of ascorbic acid via luminescence quenching of LaF3: Ce, Tb nanoparticles synthesized through a microwave-assisted solvothermal method. Anal. Methods 2013, 5, 1463–1468.

File
12274_2018_2154_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 April 2018
Revised: 17 July 2018
Accepted: 20 July 2018
Published: 08 August 2018
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development program from the Ministry of Science and Technology of China (No. 2016YFC0207102) and the National Natural Science Foundation of China (Nos. 21501034 and 21573050). Financial support from Chinese Academy of Sciences (No. XDA09030303) was also gratefully acknowledged. We thank Prof. Qinlin Guo at Institute of Physics, Chinese Academy of Sciences for help with XPS study.

Return