Journal Home > Volume 11 , Issue 12

When the dimensionality of layered compounds decreases to the physical limit, ultimate two-dimensional (2D) anisotropy and/or quantum confinement effects may lead to extraordinary physicochemical attributes. Here, we report single-layer Rh nanosheets (NSs) exhibiting ultrahigh peroxidase-like activity, far exceeding that of horseradish peroxidase (HRP) and of most known layered nanomaterial-based peroxidase mimics. Considering per NS as an active subunit, the Rh NSs displayed a catalytic rate constant (Kcat) as high as 4.45 × 105 s–1 to H2O2, two orders of magnitude higher than those of HRP and Rh nanoparticles. The high atom efficiency of the Rh NSs can be attributed to the full exposure of surface-active Rh atoms, which greatly facilitates electron transfer and formation of superoxide anions, representing reactive oxygen species in the catalytic process. As a proof-of-concept application, the Rh NSs were successfully used as peroxidase mimics for the colorimetric detection of H2O2 and xanthine, with high sensitivity and selectivity. Moreover, a simple, rapid, and sensitive Rh-based paper sensor for ascorbic acid was also developed. In summary, this work provides a novel example of single-layer metallic NSs for biosensing.

File
12274_2018_2154_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 April 2018
Revised: 17 July 2018
Accepted: 20 July 2018
Published: 08 August 2018
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development program from the Ministry of Science and Technology of China (No. 2016YFC0207102) and the National Natural Science Foundation of China (Nos. 21501034 and 21573050). Financial support from Chinese Academy of Sciences (No. XDA09030303) was also gratefully acknowledged. We thank Prof. Qinlin Guo at Institute of Physics, Chinese Academy of Sciences for help with XPS study.

Return