Journal Home > Volume 12 , Issue 3

We developed a general and effective strategy to afford rod-like [Au25(SPh)5(PPh3)10X2]X2 (X = Cl/Br) nanoclusters, capped by conjugated delocalized pπ electron mediated ligands. The detailed atomic structure of these materials was resolved by synchrotron radiation X-ray diffraction (SRXRD) combined with electrospray ionization mass spectrometry (ESI-MS) and UV–vis analyses. The Au17(SR)3(PPh3)6X2 minimum asymmetric unit, with exposed Au atoms at the center, can serve as an important model to understand the transformation of homogold nanoclusters into alloy nanoclusters. The conjugated delocalized pπ electrons of the thiolate ligands can effectively tune the electronic properties of the Au25 kernel, as qualitatively evidenced by the energy gaps measured by UV–vis experiments and density functional theory (DFT) calculations. The delocalized electrons distinctly flow to the orbitals of the Au25 kernel via the S atoms of the aromatic thiolates. The ESI-MS analysis indicates that Au3 clusters are formed during the etching reactions, which provide an opportunity to gain insight into the intriguing conversion pathway of the Aun(PPh3)mXy precursor to the final Au25 nanorods. Finally, the thiophenol-protected Au25 nanorods, immobilized on activated carbon, show good catalytic activity in the aerobic oxidation of glucose to gluconic acid (74% glucose conversion and 100% selectivity for gluconic acid), much higher than that of the aliphatic Au25 analogue. The Au25(SPh)5(PPh3)10X2 catalyst yields a turnover frequency (TOF) of 13.5 s–1, higher than that of commercial catalysts such as Pd/activated carbon (AC) and Pd-Bi/AC. The insight obtained from this study will support the development and design of efficient nanogold catalysts for special oxidation reactions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Motif-mediated Au25(SPh)5(PPh3)10X2 nanorods with conjugated electron delocalization

Show Author's information Kai Zheng1,2,§Jiangwei Zhang1,§Dan Zhao3Yong Yang4Zhimin Li1,2Gao Li1( )
State Key Laboratory of Catalysis,Dalian Institute of Chemical Physics, Chinese Academy of Sciences,Dalian,116023,China;
University of Chinese Academy of Sciences, Beijing 100049, China
Institute of Catalysis for Energy and Environment,College of Chemistry and Chemical Engineering, Shenyang Normal University,Shenyang,110034,China;
Department of Materials Science & Engineering,College of Engineering, Peking University,Beijing,100871,China;

§ Kai Zheng and Jiangwei Zhang contributed equally to this work.

Abstract

We developed a general and effective strategy to afford rod-like [Au25(SPh)5(PPh3)10X2]X2 (X = Cl/Br) nanoclusters, capped by conjugated delocalized pπ electron mediated ligands. The detailed atomic structure of these materials was resolved by synchrotron radiation X-ray diffraction (SRXRD) combined with electrospray ionization mass spectrometry (ESI-MS) and UV–vis analyses. The Au17(SR)3(PPh3)6X2 minimum asymmetric unit, with exposed Au atoms at the center, can serve as an important model to understand the transformation of homogold nanoclusters into alloy nanoclusters. The conjugated delocalized pπ electrons of the thiolate ligands can effectively tune the electronic properties of the Au25 kernel, as qualitatively evidenced by the energy gaps measured by UV–vis experiments and density functional theory (DFT) calculations. The delocalized electrons distinctly flow to the orbitals of the Au25 kernel via the S atoms of the aromatic thiolates. The ESI-MS analysis indicates that Au3 clusters are formed during the etching reactions, which provide an opportunity to gain insight into the intriguing conversion pathway of the Aun(PPh3)mXy precursor to the final Au25 nanorods. Finally, the thiophenol-protected Au25 nanorods, immobilized on activated carbon, show good catalytic activity in the aerobic oxidation of glucose to gluconic acid (74% glucose conversion and 100% selectivity for gluconic acid), much higher than that of the aliphatic Au25 analogue. The Au25(SPh)5(PPh3)10X2 catalyst yields a turnover frequency (TOF) of 13.5 s–1, higher than that of commercial catalysts such as Pd/activated carbon (AC) and Pd-Bi/AC. The insight obtained from this study will support the development and design of efficient nanogold catalysts for special oxidation reactions.

Keywords: aerobic oxidation, gold clusters, Au25 nanorod, synchrotron radiation X-ray diffraction (SRXRD)

References(38)

1

Zhang, J. W.; Zhou, Y.; Zheng, K.; Abroshan, H.; Kauffman, D. R.; Sun, J. L.; Li, G. Diphosphine-induced chiral propeller arrangement of gold nanoclusters for singlet oxygen photogeneration. Nano Res. 2018, 11, 5787–5798.

2

Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758.

3

Zhang, C. L.; Chen, Y. D.; Wang, H.; Li, Z. M.; Zheng, K.; Li, S. J.; Li, G. Transition metal-mediated catalytic properties of gold nanoclusters in aerobic alcohol oxidation. Nano Res. 2018, 11, 2139–2148.

4

Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346-10413.

5

Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

6

Fang, J.; Zhang, B.; Yao, Q. F.; Yang, Y.; Xie, J. P.; Yan, N. Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters. Coord. Chem. Rev. 2016, 322, 1–29.

7

Sementa, L.; Barcaro, G.; Dass, A.; Stener, M.; Fortunelli, A. Designing ligand-enhanced optical absorption of thiolated gold nanoclusters. Chem. Commun. 2015, 51, 7935–7938.

8

Zhang, J. W.; Huang, Y. C.; Li, G.; Wei, Y. G. Recent advances in alkoxylation chemistry of polyoxometalates: From synthetic strategies, structural overviews to functional applications. Coord. Chem. Rev. , in press, DOI: 10.1016/j.ccr.2017.10.025.

9

Shichibu, Y.; Negishi, Y.; Watanabe, T.; Chaki, N. K.; Kawaguchi, H.; Tsukuda, T. Biicosahedral gold clusters[Au25(PPh3)10(SCnH2n+1)5Cl2]2+ (n = 2–18): A stepping stone to cluster-assembled materials. J. Phys. Chem. C 2007, 111, 7845–7847.

10

Qian, H. F.; Eckenhoff, W. T.; Bier, M. E.; Pintauer, T.; Jin, R. C. Crystal structures of Au2 complex and Au25 nanocluster and mechanistic insight into the conversion of polydisperse nanoparticles into monodisperse Au25 nanoclusters. Inorg. Chem. 2011, 50, 10735–10739.

11

Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. Crystal structure of the gold nanoparticle[N(C8H17)4] [Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 2008, 130, 3754–3755.

12

Zhu, M. Z.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. C. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 2008, 130, 5883–5885.

13

Shichibu, Y.; Negishi, Y.; Tsukuda, T.; Teranishi, T. Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters. J. Am. Chem. Soc. 2005, 127, 13464–13465.

14

Lin, J. Z.; Li, W. L.; Liu, C.; Huang, P.; Zhu, M. Z.; Ge, Q. J.; Li, G. One-phase controlled synthesis of Au25 nanospheres and nanorods from 1.3 nm Au: PPh3 nanoparticles: The ligand effects. Nanoscale 2015, 7, 13663–13670.

15

Zhu, M.; Li, M. B.; Yao, C. H.; Xia, N.; Zhao, Y.; Yan, N.; Liao, L. W.; Wu, Z. K. PPh3: Converts thiolated gold nanoparticles to[Au25(PPh3)10(SR)5Cl2]2+. Acta Phys. -Chim. Sin. 2018, 34, 792–798.

16

Li, G.; Qian, H. F.; Jin, R. C. Gold nanocluster-catalyzed selective oxidation of sulfide to sulfoxide. Nanoscale 2012, 4, 6714–6717.

17

Kenzler, S.; Schrenk, C.; Schnepf, A. Au108S24(PPh3)16: A highly symmetric nanoscale gold cluster confirms the general concept of metalloid clusters. Angew. Chem., Int. Ed. 2017, 56, 393–396.

18

Liu, C.; Li, T.; Li, G.; Nobusada, K.; Zeng, C. J.; Pang, G. S.; Rosi, N. L.; Jin, R. C. Observation of body-centered cubic gold nanocluster. Angew. Chem., Int. Ed. 2015, 54, 9826–9829.

19

Crasto, D.; Malola, S.; Brosofsky, G.; Dass, A.; Häkkinen, H. Single crystal XRD structure and theoretical analysis of the chiral Au30S(S-t-Bu)18 cluster. J. Am. Chem. Soc. 2014, 136, 5000–5005.

20

Gan, Z. B.; Chen, J. S.; Wang, J.; Wang, C. M.; Li, M. -B.; Yao, C. H.; Zhuang, S. L.; Xu, A.; Li, L. L.; Wu, Z. K. The fourth crystallographic closest packing unveiled in the gold nanocluster crystal. Nat. Commun. 2017, 8, 14739.

21

Higaki, T.; Liu, C.; Zhou, M.; Luo, T. -Y.; Rosi, N. L.; Jin, R. C. Tailoring the structure of 58-electron gold nanoclusters: Au103S2(S-Nap)41 and its implications, J. Am. Chem. Soc. 2017, 139, 9994–10001.

22

Sheldrick, G. M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. A 2015, 71, 3–8.

23

Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341.

24

Nomiya, K.; Noguchi, R.; Ohsawa, K.; Tsuda, K.; Oda, M. Synthesis, crystal structure and antimicrobial activities of two isomeric gold(I) complexes with nitrogen-containing heterocycle and triphenylphosphine ligands, [Au(L)(PPh3)] (HL = pyrazole and imidazole). J. Inorg. Biochem. 2000, 78, 363–370.

25

Wang, S. X.; Abroshan, H.; Liu, C.; Luo, T. -Y.; Zhu, M. Z.; Kim, H. J.; Rosi, N. L.; Jin, R. C. Shuttling single metal atom into and out of a metal nanoparticle. Nat. Commun. 2017, 8, 848.

26

Wu, Z. K.; Jin, R. C. Exclusive synthesis of Au11(PPh3)8Br3 against the Cl analogue and the electronic interaction between cluster metal core and surface ligands. Chem. —Eur. J. 2013, 19, 12259–12263.

27

Li, Z. M.; Liu, C.; Abroshan, H.; Kauffman, D. R.; Li, G. Au38S2(SAdm)20 photocatalyst for one-step selective aerobic oxidations. ACS Catal. 2017, 7, 3368–3374.

28

Wu, Z. L.; Hu, G. X.; Jiang, D. -E.; Mullins, D. R.; Zhang, Q. -F.; Allard, L. F. Jr.; Wang, L. -S.; Overbury, S. H. Diphosphine-protected Au22 nanoclusters on oxide supports are active for gas-phase catalysis without ligand removal. Nano Lett. 2016, 16, 6560–6567.

29

Chen, H. J.; Liu, C.; Wang, M.; Zhang, C. F.; Luo, N. C.; Wang, Y. H.; Abroshan, H.; Li, G.; Wang, F. Visible light gold nanocluster photocatalyst: Selective aerobic oxidation of amines to imines. ACS Catal. 2017, 7, 3632–3638.

30

Lopez-Sanchez, J. A.; Dimitratos, N.; Hammond, C.; Brett, G. L.; Kesavan, L.; White, S.; Miedziak, P.; Tiruvalam, R.; Jenkins, R. L.; Carley, A. F. et al. Facile removal of stabilizer-ligands from supported gold nanoparticles. Nat. Chem. 2011, 3, 551–556.

31

Li, G.; Abroshan, H.; Chen, Y. X.; Jin, R. C.; Kim, H. J. Experimental and mechanistic understanding of aldehyde hydrogenation using Au25 nanoclusters with lewis acids: Unique sites for catalytic reactions. J. Am. Chem. Soc. 2015, 137, 14295–14304.

32

Elliott Ⅲ, E. W.; Glover, R. D.; Hutchison, J. E. Removal of thiol ligands from surface-confined nanoparticles without particle growth or desorption. ACS Nano 2015, 9, 3050–3059.

33

Liu, C.; Abroshan, H.; Yan, C. Y.; Li, G.; Haruta, M. One-pot synthesis of Au11(PPh2Py)7Br3 for the highly chemoselective hydrogenation of nitrobenzaldehyde. ACS Catal. 2016, 6, 92–99.

34

Liu, C.; Zhang, J. Y.; Huang, J. H.; Zhang, C. L.; Hong, F.; Zhou, Y.; Li, G.; Haruta, M. Efficient aerobic oxidation of glucose to gluconic acid over activated carbon-supported gold clusters. Chemsuschem 2017, 10, 1976–1980.

35

Chatterjee, C.; Pong, F.; Sen, A. Chemical conversion pathways for carbohydrates. Green Chem. 2015, 17, 40–71.

36

Li, G.; Jin, R. C. Gold nanocluster-catalyzed semihydrogenation: A unique activation pathway for terminal alkynes. J. Am. Chem. Soc. 2014, 136, 11347–11354.

37

Tsunoyama, H.; Ichikuni, N.; Sakurai, H.; Tsukuda, T. Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J. Am. Chem. Soc. 2009, 131, 7086–7093.

38

Li, Z. M.; Li, W. L.; Abroshan, H.; Ge, Q. J.; Li, G.; Jin, R. C. Dual effects of water vapor on ceria-supported gold clusters. Nanoscale 2018, 10, 6558–6565.

File
12274_2018_2147_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 April 2018
Revised: 13 June 2018
Accepted: 08 July 2018
Published: 01 August 2018
Issue date: March 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

We thank the financial support by the National Natural Science Foundation of China (No. 21701168), Liaoning Natural Science Foundation (No. 20170540897), open project Foundation of State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University (No. 201709), and Shanxi Province Hundred Talent Project. BL14B and BL17B beamline of National Facility for Protein Science in Shanghai, Shanghai Synchrotron Radiation Facility for providing the beam time.

Return