Journal Home > Volume 11 , Issue 10

As an attractive alternative to plasmid DNA, messenger RNA (mRNA) has recently emerged as a promising class of nucleic acid therapeutics for biomedical applications. Advances in addressing the inherent shortcomings of mRNA and in the development of nanoparticle-based delivery systems have prompted the development and clinical translation of mRNA-based medicines. In this review, we discuss the chemical modification strategies of mRNA to improve its stability, minimize immune responses, and enhance translational efficacy. We also highlight recent progress in nanoparticle-based mRNA delivery. Considerable attention is given to the increasingly widespread applications of mRNA nanomedicine in the biomedical fields of vaccination, protein-replacement therapy, gene editing, and cellular reprogramming and engineering.


menu
Abstract
Full text
Outline
About this article

Biomedical applications of mRNA nanomedicine

Show Author's information Qingqing Xiong1,2Gha Young Lee1Jianxun Ding1Wenliang Li1,3Jinjun Shi1( )
Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
Department of Hepatobiliary CancerTianjin Medical University Cancer Institute & HospitalTianjin300060China
School of PharmacyJilin Medical UniversityJilin132013China

Abstract

As an attractive alternative to plasmid DNA, messenger RNA (mRNA) has recently emerged as a promising class of nucleic acid therapeutics for biomedical applications. Advances in addressing the inherent shortcomings of mRNA and in the development of nanoparticle-based delivery systems have prompted the development and clinical translation of mRNA-based medicines. In this review, we discuss the chemical modification strategies of mRNA to improve its stability, minimize immune responses, and enhance translational efficacy. We also highlight recent progress in nanoparticle-based mRNA delivery. Considerable attention is given to the increasingly widespread applications of mRNA nanomedicine in the biomedical fields of vaccination, protein-replacement therapy, gene editing, and cellular reprogramming and engineering.

Keywords: nanoparticle, gene editing, messenger RNA, chemical modification, vaccination, protein-replacement, cellular reprogramming and engineering

References(216)

1

Brenner, S.; Jacob, F.; Meselson, M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 1961, 190, 576-581.

2

Gurdon, J. B.; Lane, C. D.; Woodland, H. R.; Marbaix, G. Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 1971, 233, 177-182.

3

Wolff, J. A.; Malone, R. W.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P. L. Direct gene transfer into mouse muscle in vivo. Science 1990, 247, 1465-1468.

4

Pardi, N.; Hogan, M. J.; Porter, F. W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261-279.

5

Meng, Z.; O'Keeffe-Ahern, J.; Lyu, J.; Pierucci, L.; Zhou, D. Z.; Wang, W. X. A new developing class of gene delivery: Messenger RNA-based therapeutics. Biomater. Sci. 2017, 5, 2381-2392.

6

Yamamoto, A.; Kormann, M.; Rosenecker, J.; Rudolph, C. Current prospects for mRNA gene delivery. Eur. J. Pharm. Biopharm. 2009, 71, 484-489.

7

Ligon, T. S.; Leonhardt, C.; Rädler, J. O. Multi-level kinetic model of mRNA delivery via transfection of lipoplexes. PLoS One 2014, 9, e107148.

8

Leonhardt, C.; Schwake, G.; Stögbauer, T. R.; Rappl, S.; Kuhr, J. T.; Ligon, T. S.; Rädler, J. O. Single-cell mRNA transfection studies: Delivery, kinetics and statistics by numbers. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 679-688.

9

Granot, Y.; Peer, D. Delivering the right message: Challenges and opportunities in lipid nanoparticles-mediated modified mRNA therapeutics—An innate immune system standpoint. Semin. Immunol. 2017, 34, 68-77.

10

Stanton, M. G.; Murphy-Benenato, K. E. Messenger RNA as a novel therapeutic approach. In RNA Therapeutics. Garner, A. L., Ed.; Springer International Publishing: Cham, 2018; pp 237-253.

11

Youn, H.; Chung, J. K. Modified mRNA as an alternative to plasmid DNA (pDNA) for transcript replacement and vaccination therapy. Expert. Opin. Biol. Ther. 2015, 15, 1337-1348.

12

Roundtree, I. A.; Evans, M. E.; Pan, T.; He, C. Dynamic RNA modifications in gene expression regulation. Cell 2017, 169, 1187-1200.

13

Hajj, K. A.; Whitehead, K. A. Tools for translation: Non-viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. 2017, 2, 17056.

14

Guan, S.; Rosenecker, J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther. 2017, 24, 133-143.

15

Li, B.; Zhang, X. F.; Dong, Y. Z. Nanoscale platforms for messenger RNA delivery. WIREs Nanomed. Nanobiotechnol. 2018, e1530.

16

Jani, B.; Fuchs, R. In vitro transcription and capping of Gaussia luciferase mRNA followed by HeLa cell transfection. J. Vis. Exp. 2012, e3702.

17

Kuhn, A. N.; Beiβert, T.; Simon, P.; Vallazza, B.; Buck, J.; Davies, B. P.; Tureci, O.; Sahin, U. mRNA as a versatile tool for exogenous protein expression. Curr. Gene Ther. 2012, 12, 347-361.

18

Sahin, U.; Karikó, K.; Türeci, Ö. mRNA-based therapeutics— Developing a new class of drugs. Nat. Rev. Drug Discov. 2014, 13, 759-780.

19

Sonenberg, N.; Gingras, A. C. The mRNA 5' cap-binding protein eIF4E and control of cell growth. Curr. Opin. Cell Biol. 1998, 10, 268-275.

20

Li, Y.; Kiledjian, M. Regulation of mRNA decapping. Wiley Interdiscip. Rev. RNA 2010, 1, 253-265.

21

Yuen, L.; Davison, A. J.; Moss, B. Early promoter-binding factor from vaccinia virions. Proc. Natl. Acad. Sci. USA 1987, 84, 6069-6073.

22

Jemielity, J.; Kowalska, J.; Rydzik, A. M.; Darzynkiewicz, E. Synthetic mRNA cap analogues with a modified triphosphate bridge—Synthesis, applications and prospects. New J. Chem. 2010, 34, 829-844.

23

De, G. E.; Preiss, T.; Hentze, M. W. Translational activation of uncapped mRNAs by the central part of human eIF4G is 5' end-dependent. RNA 1998, 4, 828-836.

24

Pasquinelli, A. E.; Dahlberg, J. E.; Lund, E. Reverse 5' caps in RNAs made in vitro by phage RNA polymerases. RNA 1995, 1, 957-967.

25

Jemielity, J.; Fowler, T.; Zuberek, J.; Stepinski, J.; Lewdorowicz, M.; Niedzwiecka, A.; Stolarski, R.; Darzynkiewicz, E.; Rhoads, R. E. Novel "anti-reverse" cap analogs with superior translational properties. RNA 2003, 9, 1108-1122.

26

Grudzien-Nogalska, E.; Stepinski, J.; Jemielity, J.; Zuberek, J.; Stolarski, R.; Rhoads, R. E.; Darzynkiewicz, E. Synthesis of anti-reverse cap analogs (ARCAs) and their applications in mRNA translation and stability. Methods Enzymol. 2007, 431, 203-227.

27

Kuhn, A. N.; Diken, M.; Kreiter, S.; Selmi, A.; Kowalska, J.; Jemielity, J.; Darzynkiewicz, E.; Huber, C.; Türeci, Ö.; Sahin, U. Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther. 2010, 17, 961-971.

28

Kowalska, J.; Zuberek, J.; Darzynkiewicz, Z. M.; Lukaszewicz, M.; Darzynkiewicz, E.; Jemielity, J. The first examples of mRNA cap analogs bearing boranophosphate modification. Nucleic Acids Symp. Ser. 2008, 52, 289-290.

29

Kowalska, J.; Wypijewska del Nogal, A.; Darzynkiewicz, Z. M.; Buck, J.; Nicola, C.; Kuhn, A. N.; Lukaszewicz, M.; Zuberek, J.; Strenkowska, M.; Ziemniak, M. et al. Synthesis, properties, and biological activity of boranophosphate analogs of the mRNA cap: Versatile tools for manipulation of therapeutically relevant cap-dependent processes. Nucleic Acids Res. 2014, 42, 10245-10264.

30

Su, W.; Slepenkov, S.; Grudzien-Nogalska, E.; Kowalska, J.; Kulis, M.; Zuberek, J.; Lukaszewicz, M.; Darzynkiewicz, E.; Jemielity, J.; Rhoads, R. E. Translation, stability, and resistance to decapping of mRNAs containing caps substituted in the triphosphate chain with BH3, Se, and NH. RNA 2011, 17, 978-988.

31

Rydzik, A. M.; Lukaszewicz, M.; Zuberek, J.; Kowalska, J.; Darzynkiewicz, Z. M.; Darzynkiewicz, E.; Jemielity, J. Synthetic dinucleotide mRNA cap analogs with tetraphosphate 5', 5'-bridge containing methylenebis(phosphonate) modification. Org. Biomol. Chem. 2009, 7, 4763-4776.

32

Strenkowska, M.; Grzela, R.; Majewski, M.; Wnek, K.; Kowalska, J.; Lukaszewicz, M.; Zuberek, J.; Darzynkiewicz, E.; Kuhn, A. N.; Sahin, U. et al. Cap analogs modified with 1, 2-dithiodiphosphate moiety protect mRNA from decapping and enhance its translational potential. Nucleic Acids Res. 2016, 44, 9578-9590.

33

Rydzik, A. M.; Warminski, M.; Sikorski, P. J.; Baranowski, M. R.; Walczak, S.; Kowalska, J.; Zuberek, J.; Lukaszewicz, M.; Nowak, E.; Claridge, W. et al. mRNA cap analogues substituted in the tetraphosphate chain with CX2: Identification of O-to-CCl2 as the first bridging modification that confers resistance to decapping without impairing translation. Nucleic Acids Res. 2017, 45, 8661-8675.

34

Goldstrohm, A. C.; Wickens, M. Multifunctional deadenylase complexes diversify mRNA control. Nat. Rev. Mol. Cell Biol. 2008, 9, 337-344.

35

Steitz, J.; Britten, C. M.; Wölfel, T.; Tüting, T. Effective induction of anti-melanoma immunity following genetic vaccination with synthetic mRNA coding for the fusion protein EGFP. TRP2. Cancer Immunol. Immunother. 2006, 55, 246-253.

36

Martin, G.; Keller, W. Tailing and 3'-end labeling of RNA with yeast poly(A) polymerase and various nucleotides. RNA 1998, 4, 226-230.

37

Körner, C. G.; Wahle, E. Poly(A) tail shortening by a Mammalian poly(A)-specific 3'-exoribonuclease. J. Biol. Chem. 1997, 272, 10448-10456.

38

Holtkamp, S.; Kreiter, S.; Selmi, A.; Simon, P.; Koslowski, M.; Huber, C.; Türeci, Ö.; Sahin, U. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 2006, 108, 4009-4017.

39

Eckmann, C. R.; Rammelt, C.; Wahle, E. Control of poly(A) tail length. Wiley Interdiscip. Rev. RNA 2011, 2, 348-361.

40

Weill, L.; Belloc, E.; Bava, F. A.; Méndez, R. Translational control by changes in poly(A) tail length: Recycling mRNAs. Nat. Struct. Mol. Biol. 2012, 19, 577-585.

41

Peng, J.; Schoenberg, D. R. mRNA with a < 20-nt poly(A) tail imparted by the poly(A)-limiting element is translated as efficiently in vivo as long poly(A) mRNA. RNA 2005, 11, 1131-1140.

DOI
42

Mockey, M.; Gonçalves, C.; Dupuy, F. P.; Lemoine, F. M.; Pichon, C.; Midoux, P. mRNA transfection of dendritic cells: Synergistic effect of ARCA mRNA capping with poly(A) chains in cis and in trans for a high protein expression level. Biochem. Biophys. Res. Commun. 2006, 340, 1062-1068.

43

Grier, A. E.; Burleigh, S.; Sahni, J.; Clough, C. A.; Cardot, V.; Choe, D. C.; Krutein, M. C.; Rawlings, D. J.; Jensen, M. C.; Scharenberg, A. M. et al. pEVL: A linear plasmid for generating mRNA IVT templates with extended encoded poly(A) sequences. Mol. Ther. Nucleic Acids 2016, 5, e306.

44

Rabinovich, P. M.; Komarovskaya, M. E.; Ye, Z. J.; Imai, C.; Campana, D.; Bahceci, E.; Weissman, S. M. Synthetic messenger RNA as a tool for gene therapy. Hum. Gene Ther. 2006, 17, 1027-1035.

45

Mignone, F.; Gissi, C.; Liuni, S.; Pesole, G. Untranslated regions of mRNAs. Genome Biol. 2002, 3, reviews0004.1-reviews0004.10.

46

Gebauer, F.; Hentze, M. W. Molecular mechanisms of translational control. Nat. Rev. Mol. Cell Biol. 2004, 5, 827-835.

47

Hinnebusch, A. G.; Ivanov, I. P.; Sonenberg, N. Translational control by 5'-untranslated regions of eukaryotic mRNAs. Science 2016, 352, 1413-1416.

48

Leppek, K.; Das, R.; Barna, M. Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 2018, 19, 158-174.

49

Mayr, C. Regulation by 3'-untranslated regions. Annu. Rev. Genet. 2017, 51, 171-194.

50

Komar, A. A.; Hatzoglou, M. Cellular IRES-mediated translation. Cell Cycle 2011, 10, 229-240.

51

Meyer, K. D.; Patil, D. P.; Zhou, J.; Zinoviev, A.; Skabkin, M. A.; Elemento, O.; Pestova, T. V.; Qian, S. B.; Jaffrey, S. R. 5' UTR m6A promotes cap-independent translation. Cell 2015, 163, 999-1010.

52

Kozak, M. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. Mol. Biol. 1987, 196, 947-950.

53

Matoulkova, E.; Michalova, E.; Vojtesek, B.; Hrstka, R. The role of the 3' untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol. 2012, 9, 563-576.

54

Ross, J.; Sullivan, T. D. Half-lives of beta and gamma globin messenger RNAs and of protein synthetic capacity in cultured human reticulocytes. Blood 1985, 66, 1149-1154.

55

Berkovits, B. D.; Mayr, C. Alternative 3' UTRs act as scaffolds to regulate membrane protein localization. Nature 2015, 522, 363-367.

56

Plotkin, J. B.; Kudla, G. Synonymous but not the same: The causes and consequences of codon bias. Nat. Rev. Genet. 2011, 12, 32-42.

57

Novoa, E. M.; Ribas de Pouplana, L. Speeding with control: Codon usage, tRNAs, and ribosomes. Trends Genet. 2012, 28, 574-581.

58

Al-Saif, M.; Khabar, K. S. A. UU/UA dinucleotide frequency reduction in coding regions results in increased mRNA stability and protein expression. Mol. Ther. 2012, 20, 954-959.

59

Gustafsson, C.; Govindarajan, S.; Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol. 2004, 22, 346-353.

60

Kudla, G.; Murray, A. W.; Tollervey, D.; Plotkin, J. B. Coding-sequence determinants of gene expression in Escherichia coli. Science 2009, 324, 255-258.

61

Knights, A. J.; Nuber, N.; Thomson, C. W.; de la Rosa, O.; Jäger, E.; Tiercy, J. M.; van den Broek, M.; Pascolo, S.; Knuth, A.; Zippelius, A. Modified tumour antigen-encoding mRNA facilitates the analysis of naturally occurring and vaccine-induced CD4 and CD8 T cells in cancer patients. Cancer Immunol. Immunother. 2009, 58, 325-338.

62

Benteyn, D.; Anguille, S.; van Lint, S.; Heirman, C.; Van Nuffel, A. M. T.; Corthals, J.; Ochsenreither, S.; Waelput, W.; van Beneden, K.; Breckpot, K. et al. Design of an optimized Wilms' Tumor 1 (WT1) mRNA construct for enhanced WT1 expression and improved immunogenicity in vitro and in vivo. Mol. Ther. Nucleic Acids 2013, 2, e134.

63

Mauro, V. P.; Chappell, S. A. A critical analysis of codon optimization in human therapeutics. Trends Mol. Med. 2014, 20, 604-613.

64

Karikó, K.; Ni, H. P.; Capodici, J.; Lamphier, M.; Weissman, D. mRNA is an endogenous ligand for toll-like receptor 3. J. Biol. Chem. 2004, 279, 12542-12550.

65

Heil, F.; Hemmi, H.; Hochrein, H.; Ampenberger, F.; Kirschning, C.; Akira, S.; Lipford, G.; Wagner, H.; Bauer, S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004, 303, 1526-1529.

66

Goubau, D.; Schlee, M.; Deddouche, S.; Pruijssers, A. J.; Zillinger, T.; Goldeck, M.; Schuberth, C.; van den Veen, A. G.; Fujimura, T.; Rehwinkel, J. et al. Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates. Nature 2014, 514, 372-375.

67

Pollard, C.; De Koker, S.; Saelens, X.; Vanham, G.; Grooten, J. Challenges and advances towards the rational design of mRNA vaccines. Trends Mol. Med. 2013, 19, 705-713.

68

Kallen, K. J.; Theβ, A. A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. Ther. Adv. Vaccines 2014, 2, 10-31.

69

Bate, A.; Juniper, J.; Lawton, A. M.; Thwaites, R. M. A. Designing and incorporating a real world data approach to international drug development and use: What the UK offers. Drug Discov. Today 2016, 21, 400-405.

70

Karikó, K.; Muramatsu, H.; Welsh, F. A.; Ludwig, J.; Kato, H.; Akira, S.; Weissman, D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 2008, 16, 1833-1840.

71

Anderson, B. R.; Muramatsu, H.; Nallagatla, S. R.; Bevilacqua, P. C.; Sansing, L. H.; Weissman, D.; Karikó, K. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 2010, 38, 5884-5892.

72

Anderson, B. R.; Muramatsu, H.; Jha, B. K.; Silverman, R. H.; Weissman, D.; Karikó, K. Nucleoside modifications in RNA limit activation of 2'-5'-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Res. 2011, 39, 9329-9338.

73

Li, B.; Zhao, W. Y.; Luo, X.; Zhang, X. F.; Li, C. L.; Zeng, C. X.; Dong, Y. Z. Engineering CRISPR-Cpf1 crRNAs and mRNAs to maximize genome editing efficiency. Nat. Biomed. Eng. 2017, 1, 0066.

74

Kwon, H.; Kim, M.; Seo, Y.; Moon, Y. S.; Lee, H. J.; Lee, K.; Lee, H. Emergence of synthetic mRNA: In vitro synthesis of mRNA and its applications in regenerative medicine. Biomaterials 2018, 156, 172-193.

75

Li, B.; Luo, X.; Dong, Y. Z. Effects of chemically modified messenger RNA on protein expression. Bioconjugute Chem. 2016, 27, 849-853.

76

Zangi, L.; Lui, K. O.; Von Gise, A.; Ma, Q.; Ebina, W.; Ptaszek, L. M.; Später, D.; Xu, H. S.; Tabebordbar, M.; Gorbatov, R. et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol. 2013, 31, 898-907.

77

Wroblewska, L.; Kitada, T.; Endo, K.; Siciliano, V.; Stillo, B.; Saito, H.; Weiss, R. Mammalian synthetic circuits with RNA binding proteins for RNA-only delivery. Nat. Biotechnol. 2015, 33, 839-841.

78

Kormann, M. S.; Hasenpusch, G.; Aneja, M. K.; Nica, G.; Flemmer, A. W.; Herber-Jonat, S.; Huppmann, M.; Mays, L. E.; Illenyi, M.; Schams, A. et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat. Biotechnol. 2011, 29, 154-157.

79

Andries, O.; Mc Cafferty, S.; De Smedt, S. C.; Weiss, R.; Sanders, N. N.; Kitada, T. N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control. Release. 2015, 217, 337-344.

80

Uchida, S.; Kataoka, K.; Itaka, K. Screening of mRNA Chemical modification to maximize protein expression with reduced immunogenicity. Pharmaceutics 2015, 7, 137-151.

81

Kotterman, M. A.; Schaffer, D. V. Engineering adeno-associated viruses for clinical gene therapy. Nat. Rev. Genet. 2014, 15, 445-451.

82

Yin, H.; Kanasty, R. L.; Eltoukhy, A. A.; Vegas, A. J.; Dorkin, J. R.; Anderson, D. G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 2014, 15, 541-555.

83

Bessis, N.; GarciaCozar, F. J.; Boissier, M. C. Immune responses to gene therapy vectors: Influence on vector function and effector mechanisms. Gene Ther. 2004, 11, S10-S17.

84

Thomas, C. E.; Ehrhardt, A.; Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 2003, 4, 346-358.

85

Bouard, D.; Alazard-Dany, N.; Cosset, F. L. Viral vectors: From virology to transgene expression. Br. J. Pharmacol. 2009, 157, 153-165.

86

Malone, R. W.; Felgner, P. L.; Verma, I. M. Cationic liposome-mediated RNA transfection. Proc. Natl. Acad. Sci. USA 1989, 86, 6077-6081.

87

Zohra, F. T.; Chowdhury, E. H.; Akaike, T. High performance mRNA transfection through carbonate apatite-cationic liposome conjugates. Biomaterials 2009, 30, 4006-4013.

88

Sayour, E. J.; De Leon, G.; Pham, C.; Grippin, A.; Kemeny, H.; Chua, J.; Huang, J. P.; Sampson, J. H.; Sanchez-Perez, L.; Flores, C. et al. Systemic activation of antigen-presenting cells via RNA-loaded nanoparticles. Oncoimmunology 2017, 6, e1256527.

89

Kauffman, K. J.; Dorkin, J. R.; Yang, J. H.; Heartlein, M. W.; DeRosa, F.; Mir, F. F.; Fenton, O. S.; Anderson, D. G. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 2015, 15, 7300-7306.

90

Mandal, P. K.; Rossi, D. J. Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat. Protoc. 2013, 8, 568-582.

91

Kanasty, R.; Dorkin, J. R.; Vegas, A.; Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 2013, 12, 967-977.

92

Kauffman, K. J.; Dorkin, J. R.; Yang, J. H.; Heartlein, M. W.; DeRosa, F.; Mir, F. F.; Fenton, O. S.; Anderson, D. G. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 2015, 15, 7300-7306.

93

Li, B.; Luo, X.; Deng, B. B.; Wang, J. F.; McComb, D. W.; Shi, Y. M.; Gaensler, K. M. L.; Tan, X.; Dunn, A. L.; Kerlin, B. A. et al. An orthogonal array optimization of lipid-like nanoparticles for mRNA delivery in vivo. Nano Lett. 2015, 15, 8099-8107.

94

Luo, X.; Li, B.; Zhang, X.; Zhao, W.; Bratasz, A.; Deng, B.; McComb, D. W.; Dong, Y. Dual-functional lipid-like nanoparticles for delivery of mRNA and MRI contrast agents. Nanoscale 2017, 9, 1575-1579.

95

Fenton, O. S.; Kauffman, K. J.; McClellan, R. L.; Appel, E. A.; Dorkin, J. R.; Tibbitt, M. W.; Heartlein, M. W.; DeRosa, F.; Langer, R.; Anderson, D. G. Bioinspired alkenyl amino alcohol ionizable lipid materials for highly potent in vivo mRNA delivery. Adv. Mater. 2016, 28, 2939-2943.

96

Patel, S.; Ashwanikumar, N.; Robinson, E.; DuRoss, A.; Sun, C.; Murphy-Benenato, K. E.; Mihai, C.; Almarsson, O.; Sahay, G. Boosting intracellular delivery of lipid nanoparticle-encapsulated mRNA. Nano Lett. 2017, 17, 5711-5718.

97

Bissig, C.; Johnson, S.; Gruenberg, J. Chapter 2-Studying lipids involved in the endosomal pathway. In Methods Cell Biol. 2012, 108, 19-46.

98

Zatsepin, T.; Kotelevtsev, Y.; Koteliansky, V. Lipid nanoparticles for targeted siRNA delivery-going from bench to bedside. Int. J. Nanomed. 2016, 11, 3077-3086.

99

Cullis, P. R.; Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 2017, 25, 1467-1475.

100

Cho Yong, W.; Kim, J. D.; Park, K. Polycation gene delivery systems: Escape from endosomes to cytosol. J. Pharm. Pharmacol. 2003, 55, 721-734.

101

Zhu, J.; Qiao, M. X.; Wang, Q.; Ye, Y. Q.; Ba, S.; Ma, J. J.; Hu, H. Y.; Zhao, X. L.; Chen, D. W. Dual-responsive polyplexes with enhanced disassembly and endosomal escape for efficient delivery of siRNA. Biomaterials 2018, 162, 47-59.

102

Zhang, M. M.; Xiong, Q. Q.; Wang, Y. S.; Zhang, Z. B.; Shen, W.; Liu, L. R.; Wang, Q. Y.; Zhang, Q. Q. A well-defined coil-comb polycationic brush with "star polymers" as side chains for gene delivery. Polym. Chem. 2014, 5, 4670-4678.

103

Li, M.; Zhao, M. N.; Fu, Y.; Li, Y.; Gong, T.; Zhang, Z. R.; Sun, X. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra- and paracellular pathways. J. Control. Release. 2016, 228, 9-19.

104

Chiper, M.; Tounsi, N.; Kole, R.; Kichler, A.; Zuber, G. Self-aggregating 1.8 kDa polyethylenimines with dissolution switch at endosomal acidic pH are delivery carriers for plasmid DNA, mRNA, siRNA and exon-skipping oligonucleotides. J. Control. Release. 2017, 246, 60-70.

105

Little, S. R.; Lynn, D. M.; Ge, Q.; Anderson, D. G.; Puram, S. V.; Chen, J. Z.; Eisen, H. N.; Langer, R. Poly-β amino ester-containing microparticles enhance the activity of nonviral genetic vaccines. Proc. Natl. Acad. Sci. USA 2004, 101, 9534-9539.

106

Wang, H. M.; Wan, G. Y.; Liu, Y. Y.; Chen, B. W.; Chen, H. L.; Zhang, S. P.; Wang, D.; Xiong, Q. Q.; Zhang, N.; Wang, Y. S. Dual-responsive nanoparticles based on oxidized pullulan and a disulfide-containing poly(β-amino ester) for efficient delivery of genes and chemotherapeutic agents targeting hepatoma. Polym. Chem. 2016, 7, 6340-6353.

107

Eltoukhy, A. A.; Chen, D. L.; Alabi, C. A.; Langer, R.; Anderson, D. G. Degradable terpolymers with alkyl side chains demonstrate enhanced gene delivery potency and nanoparticle stability. Adv. Mater. 2013, 25, 1487-1493.

108

Kaczmarek, J. C.; Patel, A. K.; Kauffman, K. J.; Fenton, O. S.; Webber, M. J.; Heartlein, M. W.; DeRosa, F.; Anderson, D. G. Polymer-lipid nanoparticles for systemic delivery of mRNA to the lungs. Angew. Chem., Int. Ed. 2016, 55, 13808-13812.

109

Xu, F. J.; Yang, W. T. Polymer vectors via controlled/ living radical polymerization for gene delivery. Prog. Polym. Sci. 2011, 36, 1099-1131.

110

Uzgün, S.; Nica, G.; Pfeifer, C.; Bosinco, M.; Michaelis, K.; Lutz, J. F.; Schneider, M.; Rosenecker, J.; Rudolph, C. PEGylation improves nanoparticle formation and transfection efficiency of messenger RNA. Pharm. Res. 2011, 28, 2223-2232.

111

Cheng, C.; Convertine, A. J.; Stayton, P. S.; Bryers, J. D. Multifunctional triblock copolymers for intracellular messenger RNA delivery. Biomaterials 2012, 33, 6868-6876.

112

Nuhn, L.; Kaps, L.; Diken, M.; Schuppan, D.; Zentel, R. Reductive decationizable block copolymers for stimuli-responsive mRNA delivery. Macromol. Rapid Commun. 2016, 37, 924-933.

113

Chahal, J. S.; Khan, O. F.; Cooper, C. L.; McPartlan, J. S.; Tsosie, J. K.; Tilley, L. D.; Sidik, S. M.; Lourido, S.; Langer, R.; Bavari, S. et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc. Natl. Acad. Sci. USA 2016, 113, E4133-E4142.

114

Buschmann, M. D.; Merzouki, A.; Lavertu, M.; Thibault, M.; Jean, M.; Darras, V. Chitosans for delivery of nucleic acids. Adv. Drug Delivery Rev. 2013, 65, 1234-1270.

115

Lallana, E.; Rios de la Rosa, J. M.; Tirella, A.; Pelliccia, M.; Gennari, A.; Stratford, I. J.; Puri, S.; Ashford, M.; Tirelli, N. Chitosan/hyaluronic acid nanoparticles: Rational design revisited for RNA delivery. Mol. Pharmaceutics 2017, 14, 2422-2436.

116

Amos, H. Protamine enhancement of RNA uptake by cultured chick cells. Biochem. Biophys. Res. Commun. 1961, 5, 1-4.

117

Scheel, B.; Teufel, R.; Probst, J.; Carralot, J. P.; Geginat, J.; Radsak, M.; Jarrossay, D.; Wagner, H.; Jung, G.; Rammensee, H. G. et al. Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. Eur. J. Immunol. 2005, 35, 1557-1566.

118

Rauch, S.; Lutz, J.; Kowalczyk, A.; Schlake, T.; Heidenreich, R. RNActive® technology: Generation and testing of stable and immunogenic mRNA vaccines. In: RNA Vaccines. Kramps, T.; Elbers, K., Eds.; Humana Press: New York, NY, 2017; pp. 89-107.

119

Kübler, H.; Scheel, B.; Gnad-Vogt, U.; Miller, K.; Schultze-Seemann, W.; Dorp, F. V.; Parmiani, G.; Hampel, C.; Wedel, S.; Trojan, L. et al. Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: A first-in-man phase Ⅰ/Ⅱa study. J. Immunother. Cancer 2015, 3, 26.

120

Chen, Q. X.; Qi, R. G.; Chen, X. Y.; Yang, X.; Wu, S. D.; Xiao, H. H.; Dong, W. F. A targeted and stable polymeric nanoformulation enhances systemic delivery of mRNA to tumors. Mol. Ther. 2017, 25, 92-101.

121

Oldenhuis Nathan, J.; Eldredge Alexander, C.; Burts Alan, O.; Ryu Keun, A.; Chung, J.; Johnson Mark, E.; Guan, Z. B. Biodegradable dendronized polymers for efficient mRNA delivery. ChemistrySelect 2016, 1, 4413-4417.

122

Shi, J. J.; Xiao, Z. Y.; Votruba Alexander, R.; Vilos, C.; Farokhzad Omid, C. Differentially charged hollow core/shell lipid–polymer–lipid hybrid nanoparticles for small interfering RNA delivery. Angew. Chem., Int. Ed. 2011, 50, 7027-7031.

123

Dehaini, D.; Fang, R. H.; Luk, B. T.; Pang, Z. Q.; Hu, C. M. J.; Kroll, A. V.; Yu, C. L.; Gao, W. W.; Zhang, L. F. Ultra-small lipid-polymer hybrid nanoparticles for tumor-penetrating drug delivery. Nanoscale 2016, 8, 14411-14419.

124

Fang, R. H.; Jiang, Y.; Fang, J. C.; Zhang, L. F. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials 2017, 128, 69-83.

125

Xu, X. D.; Wu, J.; Liu, Y. L.; Saw, P. E.; Tao, W.; Yu, M.; Zope, H.; Si, M.; Victorious, A.; Rasmussen, J. et al. Multifunctional envelope-type siRNA delivery nanoparticle platform for prostate cancer therapy. ACS Nano 2017, 11, 2618-2627.

126

Xu, X. D.; Saw, P. E.; Tao, W.; Li, Y. J.; Ji, X. Y.; Yu, M.; Mahmoudi, M.; Rasmussen, J.; Ayyash, D.; Zhou, Y. X. et al. Tumor microenvironment-responsive multistaged nanoplatform for systemic RNAi and cancer therapy. Nano Lett. 2017, 17, 4427-4435.

127

Islam, M. A.; Xu, Y.; Zope, H.; Cao, W.; Mahmoudi, M.; Langer, R.; Kantoff, P. W.; Shi, J.; Zetter, B. R.; Farokhzad, O. C. Restoration of tumor suppression in vivo by systemic delivery of chemically-modified PTEN mRNA nanoparticles. J. Clin. Oncol. 2017, 35, 11582-11582.

128

Wang, Y. H.; Su, H. H.; Yang, Y.; Hu, Y. X.; Zhang, L.; Blancafort, P.; Huang, L. Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol. Ther. 2013, 21, 358-367.

129

Su, X. F.; Fricke, J.; Kavanagh, D. G.; Irvine, D. J. In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. Mol. Pharmaceutics 2011, 8, 774-787.

130

Liang, P.; Liu, C. J.; Zhuo, R. X.; Cheng, S. X. Self-assembled inorganic/organic hybrid nanoparticles with multi-functionalized surfaces for active targeting drug delivery. J. Mater. Chem. B 2013, 1, 4243-4250.

131

Zohra, F. T.; Chowdhury, E. H.; Nagaoka, M.; Akaike, T. Drastic effect of nanoapatite particles on liposome-mediated mRNA delivery to mammalian cells. Anal. Biochem. 2005, 345, 164-166.

132

Zohra, F. T.; Maitani, Y.; Akaike, T. mRNA delivery through fibronectin associated liposome-apatite particles: A new approach for enhanced mRNA transfection to mammalian cell. Biol. Pharm. Bull. 2012, 35, 111-115.

133

Haque, S. T.; Chowdhury, E. H. Recent progress in delivery of therapeutic and imaging agents utilizing organic-inorganic hybrid nanoparticles. Curr. Drug Deliv. 2018, 15, 485-496.

134

Alexander, C. M.; Hamner, K. L.; Maye, M. M.; Dabrowiak, J. C. Multifunctional DNA-gold nanoparticles for targeted doxorubicin delivery. Bioconjugute Chem. 2014, 25, 1261-1271.

135

Ryou, S. M.; Kim, S.; Jang, H. H.; Kim, J. H.; Yeom, J. H.; Eom, M. S.; Bae, J.; Han, M. S.; Lee, K. Delivery of shRNA using gold nanoparticle-DNA oligonucleotide conjugates as a universal carrier. Biochem. Biophys. Res. Commun. 2010, 398, 542-546.

136

Song, L.; Guo, Y.; Roebuck, D.; Chen, C.; Yang, M.; Yang, Z. Q.; Sreedharan, S.; Glover, C.; Thomas, J. A.; Liu, D. S. et al. Terminal PEGylated DNA–gold nanoparticle conjugates offering high resistance to nuclease degradation and efficient intracellular delivery of DNA binding agents. ACS Appl. Mater. Interfaces 2015, 7, 18707-18716.

137

Yeom, J. H.; Ryou, S. M.; Won, M.; Park, M.; Bae, J.; Lee, K. Inhibition of xenograft tumor growth by gold nanoparticle-DNA oligonucleotide conjugates-assisted delivery of Bax mRNA. PLoS One 2013, 8, e75369.

138

Park, S.; Hamad-Schifferli, K. Enhancement of in vitro translation by gold nanoparticle—DNA conjugates. ACS Nano 2010, 4, 2555-2560.

139

Chan, K. P.; Gao, Y.; Goh, J. X.; Susanti, D.; Yeo, E. L. L.; Chao, S. H.; Kah, J. C. Y. Exploiting the protein corona from cell lysate on DNA functionalized gold nanoparticles for enhanced mRNA translation. ACS Appl. Mater. Interfaces 2017, 9, 10408-10417.

140

Martinon, F.; Krishnan, S.; Lenzen, G.; Magné, R.; Gomard, E.; Guillet, J. G.; Lévy, J. P.; Meulien, P. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur. J. Immunol. 1993, 23, 1719-1722.

141

Perri, S.; Greer, C. E.; Thudium, K.; Doe, B.; Legg, H.; Liu, H.; Romero, R. E.; Tang, Z. Q.; Bin, Q.; Dubensky Jr, T. W. et al. An alphavirus replicon particle chimera derived from Venezuelan equine encephalitis and sindbis viruses is a potent gene-based vaccine delivery vector. J. Virol. 2003, 77, 10394-10403.

142

Geall, A. J.; Verma, A.; Otten, G. R.; Shaw, C. A.; Hekele, A.; Banerjee, K.; Cu, Y.; Beard, C. W.; Brito, L. A.; Krucker, T. et al. Nonviral delivery of self-amplifying RNA vaccines. Proc. Natl. Acad. Sci. USA 2012, 109, 14604-14609.

143

Armin, H.; Sylvie, B.; Jacob, A.; Gibson, D. G.; Giuseppe, P.; Brito, L. A.; Otten, G. R.; Michela, B.; Scilla, B.; Alessandra, B. et al. Rapidly produced SAM®vaccine against H7N9 influenza is immunogenic in mice. Emerg. Microbes Infect. 2013, 2, e52.

144

Brazzoli, M.; Magini, D.; Bonci, A.; Buccato, S.; Giovani, C.; Kratzer, R.; Zurli, V.; Mangiavacchi, S.; Casini, D.; Brito, L. M. et al. Induction of broad-based immunity and protective efficacy by self-amplifying mRNA vaccines encoding influenza virus hemagglutinin. J. Virol. 2016, 90, 332-344.

145

McCullough, K. C.; Bassi, I.; Milona, P.; Suter, R.; Thomann-Harwood, L.; Englezou, P.; Démoulins, T.; Ruggli, N. Self-replicating replicon-RNA delivery to dendritic cells by chitosan-nanoparticles for translation in vitro and in vivo. Mol. Ther. Nucleic Acids 2014, 3, e173.

146

Démoulins, T.; Milona, P.; Englezou, P. C.; Ebensen, T.; Schulze, K.; Suter, R.; Pichon, C.; Midoux, P.; Guzmán, C. A.; Ruggli, N. et al. Polyethylenimine-based polyplex delivery of self-replicating RNA vaccines. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 711-722.

147

Chahal, J. S.; Fang, T.; Woodham, A. W.; Khan, O. F.; Ling, J. J.; Anderson, D. G.; Ploegh, H. L. An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+ T cell responses in a mouse model. Sci. Rep. 2017, 7, 252.

148

Petsch, B.; Schnee, M.; Vogel, A. B.; Lange, E.; Hoffmann, B.; Voss, D.; Schlake, T.; Thess, A.; Kallen, K. J.; Stitz, L. et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat. Biotechnol. 2012, 30, 1210-1216.

149

Schnee, M.; Vogel, A. B.; Voss, D.; Petsch, B.; Baumhof, P.; Kramps, T.; Stitz, L. An mRNA vaccine encoding rabies virus glycoprotein induces protection against lethal infection in mice and correlates of protection in adult and newborn pigs. PLoS Negl. Trop. Dis. 2016, 10, e0004746.

150

Alberer, M.; Gnad-Vogt, U.; Hong, H. S.; Mehr, K. T.; Backert, L.; Finak, G.; Gottardo, R.; Bica, M. A.; Garofano, A.; Koch, S. D. et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: An open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 2017, 390, 1511-1520.

151

Pollard, C.; Rejman, J.; De Haes, W.; Verrier, B.; Van Gulck, E.; Naessens, T.; De Smedt, S.; Bogaert, P.; Grooten, J.; Vanham, G. et al. Type Ⅰ IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol. Ther. 2013, 21, 251-259.

152

Zhao, M. N.; Li, M.; Zhang, Z. R.; Gong, T.; Sun, X. Induction of HIV-1 gag specific immune responses by cationic micelles mediated delivery of gag mRNA. Drug Deliv. 2016, 23, 2596-2607.

153

Bahl, K.; Senn, J. J.; Yuzhakov, O.; Bulychev, A.; Brito, L. A.; Hassett, K. J.; Laska, M. E.; Smith, M.; Almarsson, O.; Thompson, J. et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol. Ther. 2017, 25, 1316-1327.

154

Richner, J. M.; Himansu, S.; Dowd, K. A.; Butler, S. L.; Salazar, V.; Fox, J. M.; Julander, J. G.; Tang, W. W.; Shresta, S.; Pierson, T. C. et al. Modified mRNA vaccines protect against Zika virus infection. Cell 2017, 168, 1114-1125. e10.

155

Richner, J. M.; Jagger, B. W.; Shan, C.; Fontes, C. R.; Dowd, K. A.; Cao, B.; Himansu, S.; Caine, E. A.; Nunes Bruno, T. D.; Medeiros Daniele, B. A. et al. Vaccine mediated protection against Zika virus-induced congenital disease. Cell 2017, 170, 273-283. e12.

156

Zhou, W. Z.; Hoon, D. S.; Huang, S. K. S.; Fujii, S.; Hashimoto, K.; Morishita, R.; Kaneda, Y. RNA melanoma vaccine: Induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum. Gene Ther. 1999, 10, 2719-2724.

157

Weide, B.; Pascolo, S.; Scheel, B.; Derhovanessian, E.; Pflugfelder, A.; Eigentler, T. K.; Pawelec, G.; Hoerr, I.; Rammensee, H. G.; Garbe, C. Direct injection of protamine-protected mRNA: Results of a phase 1/2 vaccination trial in metastatic melanoma patients. J. Immunother. 2009, 32, 498-507.

158

Kübler, H.; Maurer, T.; Stenzl, A.; Feyerabend, S.; Steiner, U.; Schostak, M.; Schultze-Seemann, W.; vom Dorp, F.; Pilla, L.; Viatali, G. et al. Final analysis of a phase Ⅰ/Ⅱa study with CV9103, an intradermally administered prostate cancer immunotherapy based on self-adjuvanted mRNA. J. Clin. Oncol. 2011, 29, 4535.

159

Oberli, M. A.; Reichmuth, A. M.; Dorkin, J. R.; Mitchell, M. J.; Fenton, O. S.; Jaklenec, A.; Anderson, D. G.; Langer, R.; Blankschtein, D. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 2017, 17, 1326-1335.

160

Phua, K. K. L.; Staats, H. F.; Leong, K. W.; Nair, S. K. Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Sci. Rep. 2014, 4, 5128.

161

Perche, F.; Benvegnu, T.; Berchel, M.; Lebegue, L.; Pichon, C.; JaffrèS, P. A.; Midoux, P. Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA. Nanomedicine 2011, 7, 445-453.

162

Kranz, L. M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K. C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016, 534, 396-401.

163

Fotin-Mleczek, M.; Zanzinger, K.; Heidenreich, R.; Lorenz, C.; Kowalczyk, A.; Kallen, K. J.; Huber, S. M. mRNA-based vaccines synergize with radiation therapy to eradicate established tumors. Radiat. Oncol. 2014, 9, 180.

164

Liu, L. N.; Wang, Y. H.; Miao, L.; Liu, Q.; Musetti, S.; Li, J.; Huang, L. Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer. Mol. Ther. 2018, 26, 45-55.

165

Wang, Y. H.; Zhang, L.; Xu, Z. H.; Miao, L.; Huang, L. mRNA vaccine with antigen-specific checkpoint blockade induces an enhanced immune response against established melanoma. Mol. Ther. 2018, 26, 420-434.

166

Misra, A.; Trehan, S.; Sharma, G. siRNA: Sojourn from discovery to delivery challenges and clinics. Sys. Rev. Pharm. 2010, 1, 1-15.

167

Zuckerman, J. E.; Davis, M. E. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat. Rev. Drug Discov. 2015, 14, 843-856.

168

Anderson, D. M.; Hall, L. L.; Ayyalapu, A. R.; Irion, V. R.; Nantz, M. H.; Hecker, J. G. Stability of mRNA/cationic lipid lipoplexes in human and rat cerebrospinal fluid: Methods and evidence for nonviral mRNA gene delivery to the central nervous system. Hum. Gene Ther. 2003, 14, 191-202.

169

Okumura, K.; Nakase, M.; Inui, M.; Nakamura, S.; Watanabe, Y.; Tagawa, T. Bax mRNA therapy using cationic liposomes for human malignant melanoma. J. Gene. Med. 2008, 10, 910-917.

170

Sacco, M. G.; Soldati, S.; Mira, C. E.; Cattaneo, L.; Pratesi, G.; Scanziani, E.; Vezzoni, P. Combined effects on tumor growth and metastasis by anti-estrogenic and antiangiogenic therapies in MMTV-neu mice. Gene Ther. 2002, 9, 1338-1341.

171

Uchida, S.; Kinoh, H.; Ishii, T.; Matsui, A.; Tockary, T. A.; Takeda, K. M.; Uchida, H.; Osada, K.; Itaka, K.; Kataoka, K. Systemic delivery of messenger RNA for the treatment of pancreatic cancer using polyplex nanomicelles with a cholesterol moiety. Biomaterials 2016, 82, 221-228.

172

An, D.; Schneller, J. L.; Frassetto, A.; Liang, S.; Zhu, X. L.; Park, J. S.; Theisen, M.; Hong, S. J.; Zhou, J.; Rajendran, R. et al. Systemic messenger RNA therapy as a treatment for methylmalonic acidemia. Cell Rep. 2017, 21, 3548-3558.

173

Prieve, M. G.; Harvie, P.; Monahan, S. D.; Roy, D.; Li, A. G.; Blevins, T. L.; Paschal, A. E.; Waldheim, M.; Bell, E. C.; Galperin, A. et al. Targeted mRNA therapy for ornithine transcarbamylase deficiency. Mol. Ther. 2018, 26, 801-813.

174

Schneider, M. D.; Baker, A. H.; Riley, P. Hopx and the cardiomyocyte parentage. Mol. Ther. 2015, 23, 1420-1422.

175

DeRosa, F.; Guild, B.; Karve, S.; Smith, L.; Love, K.; Dorkin, J. R.; Kauffman, K. J.; Zhang, J.; Yahalom, B.; Anderson, D. G. et al. Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system. Gene Ther. 2016, 23, 699-707.

176

Ramaswamy, S.; Tonnu, N.; Tachikawa, K.; Limphong, P.; Vega, J. B.; Karmali, P. P.; Chivukula, P.; Verma, I. M. Systemic delivery of factor Ⅸ messenger RNA for protein replacement therapy. Proc. Natl. Acad. Sci. USA 2017, 114, E1941-1950.

177

Baba, M.; Itaka, K.; Kondo, K.; Yamasoba, T.; Kataoka, K. Treatment of neurological disorders by introducing mRNA in vivo using polyplex nanomicelles. J. Control. Release 2015, 201, 41-48.

178

Matsui, A.; Uchida, S.; Ishii, T.; Itaka, K.; Kataoka, K. Messenger RNA-based therapeutics for the treatment of apoptosis-associated diseases. Sci. Rep. 2015, 5, 15810.

179

Badieyan, Z. S.; Berezhanskyy, T.; Utzinger, M.; Aneja, M. K.; Emrich, D.; Erben, R.; Schüler, C.; Altpeter, P.; Ferizi, M.; Hasenpusch, G. et al. Transcript-activated collagen matrix as sustained mRNA delivery system for bone regeneration. J. Control. Release 2016, 239, 137-148.

180

Balmayor, E. R.; Geiger, J. P.; Aneja, M. K.; Berezhanskyy, T.; Utzinger, M.; Mykhaylyk, O.; Rudolph, C.; Plank, C. Chemically modified RNA induces osteogenesis of stem cells and human tissue explants as well as accelerates bone healing in rats. Biomaterials 2016, 87, 131-146.

181

Schrom, E.; Huber, M.; Aneja, M.; Dohmen, C.; Emrich, D.; Geiger, J.; Hasenpusch, G.; Herrmann-Janson, A.; Kretzschmann, V.; Mykhailyk, O. et al. Translation of angiotensin-converting enzyme 2 upon liver- and lung-targeted delivery of optimized chemically modified mRNA. Mol. Ther. Nucleic Acids 2017, 7, 350-365.

182

Cox, D. B. T.; Platt, R. J.; Zhang, F. Therapeutic genome editing: Prospects and challenges. Nat. Med. 2015, 21, 121-131.

183

Urnov, F. D.; Rebar, E. J.; Holmes, M. C.; Zhang, H. S.; Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010, 11, 636-646.

184

Brouns, S. J. J.; Jore, M. M.; Lundgren, M.; Westra, E. R.; Slijkhuis, R. J. H.; Snijders, A. P. L.; Dickman, M. J.; Makarova, K. S.; Koonin, E. V.; van der Oost, J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008, 321, 960-964.

185

Pennisi, E. The CRISPR craze. Science 2013, 341, 833-836.

186

Cong, L.; Ran, F. A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P. D.; Wu, X.; Jiang, W.; Marraffini, L. A. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819-823.

187

Garneau, J. E.; Dupuis, M. E.; Villion, M.; Romero, D. A.; Barrangou, R.; Boyaval, P.; Fremaux, C.; Horvath, P.; Magadán, A. H.; Moineau, S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010, 468, 67-71.

188

Doudna, J. A.; Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096.

189

Wang, H. Y.; Yang, H.; Shivalila, C. S.; Dawlaty, M. M.; Cheng, A. W.; Zhang, F.; Jaenisch, R. One-step generation of mice carrying mutations in multiple genes by CRISPR/ Cas-mediated genome engineering. Cell 2013, 153, 910-918.

190

Hsu, P. D.; Lander, E S.; Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014, 157, 1262-1278.

191

Tsai, S. Q.; Zheng, Z. L.; Nguyen, N. T.; Liebers, M.; Topkar, V. V.; Thapar, V.; Wyvekens, N.; Khayter, C.; Iafrate, A. J.; Le, L. P. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 2015, 33, 187-197.

192

Mout, R.; Ray, M.; Yesilbag, T. G.; Lee, Y. W.; Tay, T.; Sasaki, K.; Rotello, V. M. Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano 2017, 11, 2452-2458.

193

Fu, Y. F.; Foden, J. A.; Khayter, C.; Maeder, M. L.; Reyon, D.; Joung, J. K.; Sander, J. D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 2013, 31, 822-826.

194

Liang, X. Q.; Potter, J.; Kumar, S.; Zou, Y. F.; Quintanilla, R.; Sridharan, M.; Carte, J.; Chen, W.; Roark, N.; Ranganathan, S. et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 2015, 208, 44-53.

195

Shen, B.; Zhang, J.; Wu, H. Y.; Wang, J. Y.; Ma, K.; Li, Z.; Zhang, X. G.; Zhang, P. M.; Huang, X. X. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res. 2013, 23, 720-723.

196

Yang, D. S.; Xu, J.; Zhu, T. T.; Fan, J. L.; Lai, L. X.; Zhang, J. F.; Chen, Y. E. Effective gene targeting in rabbits using RNA-guided Cas9 nucleases. J. Mol. Cell Biol. 2014, 6, 97-99.

197

Niu, Y. Y.; Shen, B.; Cui, Y. Q.; Chen, Y. C.; Wang, J. Y.; Wang, L.; Kang, Y.; Zhao, X. Y.; Si, W.; Li, W. et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 2014, 156, 836-843.

198

Eyquem, J.; Mansilla-Soto, J.; Giavridis, T.; van der Stegen, S. J. C.; Hamieh, M.; Cunanan, K. M.; Odak, A.; Gönen, M.; Sadelain, M. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 2017, 543, 113-117.

199

Yin, H.; Song, C. Q.; Dorkin, J. R.; Zhu, L. J.; Li, Y. X.; Wu, Q. Q.; Park, A.; Yang, J.; Suresh, S.; Bizhanova, A. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 2016, 34, 328-333.

200

Yin, H.; Song, C. Q.; Suresh, S.; Wu, Q. Q.; Walsh, S.; Rhym, L. H.; Mintzer, E.; Bolukbasi, M. F.; Zhu, L. J.; Kauffman, K. et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 2017, 35, 1179-1187.

201

Jiang, C.; Mei, M.; Li, B.; Zhu, X. R.; Zu, W. H.; Tian, Y. J.; Wang, Q. N.; Guo, Y.; Dong, Y. Z.; Tan, X. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res. 2017, 27, 440-443.

202

Miller, J. B.; Zhang, S. Y.; Kos, P.; Xiong, H.; Zhou, K. J.; Perelman, S. S.; Zhu, H.; Siegwart, D. J. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem., Int. Ed. 2017, 56, 1059-1063.

203

Finn, J. D.; Smith, A. R.; Patel, M. C.; Shaw, L.; Youniss, M. R.; van Heteren, J.; Dirstine, T.; Ciullo, C.; Lescarbeau, R.; Seitzer, J. et al. A single administration of CRISPR/ Cas9 lipid lanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 2018, 22, 2227-2235.

204

Zetsche, B.; Gootenberg, J. S.; Abudayyeh, O. O.; Slaymaker, I. M.; Makarova, K. S.; Essletzbichler, P.; Volz, S. E.; Joung, J.; Van der Oust, J.; Regev, A. et al. Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system. Cell 2015, 163, 759-771.

205

Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663-676.

206

Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861-872.

207

Yakubov, E.; Rechavi, G.; Rozenblatt, S.; Givol, D. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochem. Biophys. Res. Commun. 2010, 394, 189-193.

208

Warren, L.; Manos, P. D.; Ahfeldt, T.; Loh, Y. H.; Li, H.; Lau, F.; Ebina, W.; Mandal, P. K.; Smith, Z. D.; Meissner, A. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell stem cell 2010, 7, 618-630.

209

Warren, L.; Ni, Y. H.; Wang, J. W.; Guo, X. R. Feeder-free derivation of human induced pluripotent stem cells with messenger RNA. Sci. Rep. 2012, 2, 657.

210

Choi, H. Y.; Lee, T. J.; Yang, G. M.; Oh, J.; Won, J.; Han, J.; Jeong, G. J.; Kim, J.; Kim, J. H.; Kim, B. S. et al. Efficient mRNA delivery with graphene oxide-polyethylenimine for generation of footprint-free human induced pluripotent stem cells. J. Control. Release 2016, 235, 222-235.

211

Lee, K.; Yu, P.; Lingampalli, N.; Kim, H. J.; Tang, R.; Murthy, N. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells. Int. J. Nanomedicine 2015, 10, 1841-1854.

212

Koblas, T.; Leontovyc, I.; Loukotova, S.; Kosinova, L.; Saudek, F. Reprogramming of pancreatic exocrine cells AR42J into insulin-producing cells using mRNAs for Pdx1, Ngn3, and MafA transcription factors. Mol. Ther. Nucleic Acids 2016, 5, e320.

213

Corritore, E.; Lee, Y. S.; Pasquale, V.; Liberati, D.; Hsu, M. J.; Lombard, C. A.; Van Der Smissen, P.; Vetere, A.; Bonner-Weir, S.; Piemonti, L. et al. V-maf musculoaponeurotic fibrosarcoma oncogene homolog a synthetic modified mRNA drives reprogramming of human pancreatic duct-derived cells into insulin-secreting cells. Stem Cell. Transl. Med. 2016, 5, 1525-1537.

214

Simeonov, K. P.; Uppal, H. Direct reprogramming of human fibroblasts to hepatocyte-like cells by synthetic modified mRNAs. PLoS One 2014, 9, e100134.

215

Levy, O.; Zhao, W. A.; Mortensen, L. J.; LeBlanc, S.; Tsang, K.; Fu, M. Y.; Phillips, J. A.; Sagar, V.; Anandakumaran, P.; Ngai, J. et al. mRNA-engineered mesenchymal stem cells for targeted delivery of interleukin-10 to sites of inflammation. Blood 2013, 122, E23-E32.

216

Nowakowski, A.; Andrzejewska, A.; Boltze, J.; Nitzsche, F.; Cui, L. L.; Jolkkonen, J.; Walczak, P.; Lukomska, B.; Janowski, M. Translation, but not transfection limits clinically relevant, exogenous mRNA based induction of alpha-4 integrin expression on human mesenchymal stem cells. Sci. Rep. 2017, 7, 1103.

Publication history
Copyright
Acknowledgements

Publication history

Received: 20 April 2018
Revised: 02 July 2018
Accepted: 08 July 2018
Published: 27 July 2018
Issue date: October 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by NIH/NCI R01CA200900 and the Prostate Cancer Foundation Young Investigator Award. Q. Q. X. (No. 201706940012) and W. L. L. (No. 201708220056) were supported by the China Scholarship Council for study at Brigham and Women's Hospital.

Return