Journal Home > Volume 11 , Issue 12

In recent years, development of all-solid-state batteries has become a promising approach to improve the safety of batteries. Herein, we report the preparation of a new composite polymer electrolyte (CPE) for use in all-solid-state sodium ion batteries. The CPE comprising of poly(methacrylate) (PMA), poly(ethylene glycol) (PEG), α-Al2O3 with acidic surface sites, and NaClO4 exhibited high ionic conductivity (1.46 × 10-4 S·cm-1 at 70 ℃), wide electrochemical stability window (4.5 V vs. Na+/Na), and good mechanical strength. With the introduction of the prepared CPE and Na3V2(PO4)3, the final all-solid-state sodium ion batteries showed good rate and cycle performance, with a high reversible capacity of 85 mAh·g-1 when operated at 0.5 C (1 C = 118 mA·g–1) and 94.1% capacity retention rate after 350 cycles at 70 ℃. Our work provides a novel solid electrolyte for the development of all-solid-state sodium ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A novel PMA/PEG-based composite polymer electrolyte for all-solid-state sodium ion batteries

Show Author's information Xuejing Zhang1Xingchao Wang1,2Shuang Liu1Zhanliang Tao1( )Jun Chen1
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of ChemistryNankai UniversityTianjin300071China
Key Laboratory of Energy Materials ChemistryMinistry of EducationKey Laboratory of Advanced Functional MaterialsAutonomous RegionInstitute of Applied ChemistryXinjiang UniversityUrumqi830046China

Abstract

In recent years, development of all-solid-state batteries has become a promising approach to improve the safety of batteries. Herein, we report the preparation of a new composite polymer electrolyte (CPE) for use in all-solid-state sodium ion batteries. The CPE comprising of poly(methacrylate) (PMA), poly(ethylene glycol) (PEG), α-Al2O3 with acidic surface sites, and NaClO4 exhibited high ionic conductivity (1.46 × 10-4 S·cm-1 at 70 ℃), wide electrochemical stability window (4.5 V vs. Na+/Na), and good mechanical strength. With the introduction of the prepared CPE and Na3V2(PO4)3, the final all-solid-state sodium ion batteries showed good rate and cycle performance, with a high reversible capacity of 85 mAh·g-1 when operated at 0.5 C (1 C = 118 mA·g–1) and 94.1% capacity retention rate after 350 cycles at 70 ℃. Our work provides a novel solid electrolyte for the development of all-solid-state sodium ion batteries.

Keywords: sodium ion batteries, solid-state, composite polymer electrolyte, poly(ethylene glycol), α-Al2O3

References(43)

1

Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodiumion batteries. Adv. Energy Mater. 2016, 6, 1600943.

2

Ling, L. M.; Bai, Y.; Wang, H. L.; Ni, Q.; Zhang, J. T.; Wu, F.; Wu, C. Mesoporous TiO2 microparticles formed by the oriented attachment of nanocrystals: A super-durable anode material for sodium-ion batteries. Nano Res. 2018, 11, 1563–1574.

3

Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

4

Zhang, Q. Q.; Liu, K.; Ding, F.; Liu, X. J. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 2017, 10, 4139–4174.

5

Yang, C. P.; Fu, K.; Zhang, Y.; Hitz, E.; Hu, L. B. Protected lithium-metal anodes in batteries: From liquid to solid. Adv. Mater. 2017, 29, 1701169.

6

Choi, H.; Kim, H. W.; Ki, J. K.; Lim, Y. J.; Kim, Y.; Ahn, J. H. Nanocomposite quasi-solid-state electrolyte for highsafety lithium batteries. Nano Res. 2017, 10, 3092–3102.

7

Zhang, K.; Lee, G. H.; Park, M.; Li, W. J.; Kang, Y. M. Recent developments of the lithium metal anode for rechargeable non-aqueous batteries. Adv. Energy Mater. 2016, 6, 1600811.

8

Farrington, G. C.; Briant, J. L. Fast ionic transport in solids. Scienc. 1979, 204, 1371–1379.

9

Harry, K. J.; Hallinan, D. T.; Parkinson, D. Y.; MacDowell, A. A.; Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 2014, 13, 69–73.

10

Fullerton-Shirey, S. K.; Maranas, J. K. Effect of LiClO4 on the structure and mobility of PEO-based solid polymer electrolytes. Macromolecule. 2009, 42, 2142–2156.

11

Depre, L.; Kappel, J.; Popall, M. Inorganic–organic proton conductors based on alkylsulfone functionalities and their patterning by photoinduced methods. Electrochim. Act. 1998, 43, 1301–1306.

12

Honma, I.; Hirakawa, S.; Yamada, K.; Bae, J. M. Synthesis of organic/inorganic nanocomposites protonic conducting membrane through sol-gel processes. Solid State Ionic. 1999, 118, 29–36.

13

Gupta, R. K.; Jung, H. Y.; Whang, C. M. Transport properties of a new Li+ ion-conducting ormolyte: (SiO2-PEG)-LiCF3SO3. J. Mater. Chem. 2002, 12, 3779–3782.

14

Singh, M.; Odusanya, O.; Wilmes, G. M.; Eitouni, H. B.; Gomez, E. D.; Patel, A. J.; Chen, V. L.; Park, M. J.; Fragouli, P.; Iatrou, H. et al. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes. Macromolecule. 2007, 40, 4578–4585.

15

Wanakule, N. S.; Panday, A.; Mullin, S. A.; Gann, E.; Hexemer, A; Balsara, N. P. Ionic conductivity of block copolymer electrolytes in the vicinity of order-disorder and order-order transitions. Macromolecule. 2009, 42, 5642–5651.

16

Gomez, E. D.; Panday, A.; Feng, E. H.; Chen, V.; Stone, G. M.; Minor, A. M.; Kisielowski, C.; Downing, K. H.; Borodin, O.; Smith, G. D. et al. Effect of ion distribution on conductivity of block copolymer electrolytes. Nano Lett. 2009, 9, 1212–1216.

17

Choi, I.; Ahn, H.; Park, M. J. Enhanced performance in lithium-polymer batteries using surface-functionalized Si nanoparticle anodes and self-assembled block copolymer electrolytes. Macromolecule. 2011, 44, 7327–7334.

18

Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J. -P.; Phan, T. N. T.; Bertin, D.; Gigmes, D.; Devaux, D. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 2013, 12, 452–457.

19

Sun, J.; Liao, X. X.; Minor, A. M.; Balsara, N. P.; Zuckermann, R. N. Morphology-conductivity relationship in crystalline and amorphous sequence-defined peptoid block copolymer electrolytes. J. Am. Chem. Soc. 2014, 136, 14990–14997.

20

Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Natur. 1998, 394, 456–458.

21

Zhou, W. D.; Gao, H.C.; Goodenough, J. B. Low-cost hollow mesoporous polymer spheres and all-solid-state lithium, sodium batteries. Adv. Energy Mater. 2016, 6, 1501802.

22

Gowneni, S.; Ramanjaneyulu, K.; Basak, P. Polymernanocomposite brush-like architectures as an all-solid electrolyte matrix. ACS Nan. 2014, 8, 11409–11424.

23

Zhang, Z. Z.; Zhang, Q. Q.; Ren, C.; Luo, F.; Ma, Q.; Hu, Y. S.; Zhou, Z. B.; Li, H.; Huang, X. J.; Chen, L. Q. A ceramic/polymer composite solid electrolyte for sodium batteries. J. Mater. Chem. . 2016, 4, 15823–15828.

24

Lin, D. C.; Liu, W.; Liu, Y. Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 2016, 16, 459–465.

25

Song, J. Y.; Wang, Y. Y.; Wan, C. C. Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sourc. 1999, 77, 183–197.

26

Stephan, A. M. Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 2006, 42, 21–42.

27

Zhao, C. L.; Liu, L. L.; Qi, X. G.; Lu, Y. X.; Wu, F. X.; Zhao, J. M.; Yu, Y.; Hu, Y. S.; Chen, L. Q. Solid-state sodium batteries. Adv. Energy Mater. 2018, 8, 1703012.

28

Huang, W. W.; Zhu, Z. Q.; Wang, L. J.; Wang, S. W.; Li, H.; Tao, Z. L.; Shi, J. F.; Guan, L. H.; Chen, J. Quasisolid-state rechargeable lithium-ion batteries with a calix[4]quinone cathode and gel polymer electrolyte. Angew. Chem., Int. Ed. 2013, 52, 9162–9166.

29

Shi. J. F.; Peng, S. J.; Pei, J.; Liang, Y. L.; Cheng, F. Y.; Chen, J. Quasi-solid-state dye-sensitized solar cells with polymer gel electrolyte and triphenylamine-based organic dyes. ACS Appl. Mater. Interface. 2009, 1, 944–950.

30

Zhu, Z. Q.; Hong, M. L.; Guo, D. S.; Shi, J. F.; Tao, Z. L.; Chen, J. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. J. Am. Chem. Soc. 2014, 136, 16461–16464.

31

Hu, X. F.; Li, Z. F.; Chen, J. Flexible Li-CO2 batteries with liquid-free electrolyte. Angew. Chem., Int. Ed. 2017, 56, 5785–5789.

32

Liang, J. Z. Predictions of Young's modulus of inorganic fibrous particulate-reinforced polymer composites. J. Appl. Polym. Sci. 2013, 130, 2957–2961.

33

Jakobsen, J.; Jensen, M.; Andreasen, J. H. Thermomechanical characterisation of in-plane properties for CSM E-glass epoxy polymer composite materials-Part 2: Young's modulus. Polym. Test. 2013, 32, 1417–1422.

34

Wodtke, M.; Wasilczuk, M. Evaluation of apparent Young's modulus of the composite polymer layers used as sliding surfaces in hydrodynamic thrust bearings. Tribol. Int. 2016, 97, 244–252.

35

Lu, Y. Y.; Korf, K.; Kambe, Y.; Tu, Z. Y.; Archer, L. A. Ionic-liquid-nanoparticle hybrid electrolytes: Applications in lithium metal batteries. Angew. Chem., Int. Ed. 2014, 53, 488–492.

36

Croce, F.; Persi, L.; Scrosati, B.; Serraino-Fiory, F.; Plichta, E.; Hendrickson, M. A. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim. Act. 2001, 46, 2457–2461.

37

Ganapatibhotla, L. V. N. R.; Maranas, J. K. Interplay of surface chemistry and ion content in nanoparticle-filled solid polymer electrolytes. Macromolecule. 2014, 47, 3625–3634.

38

Srivastava, S.; Schaefer, J. L.; Yang, Z. C.; Tu, Z. Y.; Archer, L. A. 25th anniversary article: Polymer-particle composites: Phase stability and applications in electrochemical energy storage. Adv. Mater. 2014, 26, 201–234.

39

Salomon, M.; Xu, M. Z.; Eyring, E. M.; Petrucci, S. Molecular structure and dynamics of LiClO4-polyethylene oxide-400 (dimethyl ether and diglycol systems) at 25 ℃. J. Phys. Chem. 1994, 98, 8234–8244.

40

Xiong, H. M.; Zhao, X.; Chen, J. S. New polymer-inorganic nanocomposites: PEO-ZnO and PEO-ZnO-LiClO4 films. J. Phys. Chem. . 2001, 105, 10169–10174.

41

Wang, X. L.; Fan, L. Z.; Mei, A.; Ma, F. Y.; Lin, Y. H.; Nan, C. W. Ionic transport behavior in poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) and LiClO4 complex. Electrochim. Act. 2008, 53, 2448–2452.

42

Liu, W.; Liu, N.; Sun, J.; Hsu, P. C.; Li, Y. Z.; Lee, H. W.; Cui, Y. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 2015, 15, 2740–2745.

43

Wang, H. B.; Zhang, T. R.; Chen, C.; Ling, M.; Lin, Z.; Zhang, S. Q.; Pan, F.; Liang, C. D. High-performance aqueous symmetric sodium-ion battery using NASICON-structured Na2VTi(PO4)3. Nano Res. 2018, 11, 490–498.

File
12274_2018_2144_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 April 2018
Revised: 24 June 2018
Accepted: 04 July 2018
Published: 19 July 2018
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program (Nos. 2016YFB0901502 and 2016YFB0101201), the National Natural Science Foundation of China (NSFC) (No. 51771094), MOE (Nos. B12015 and IRT13R30), and the Fundamental Research Funds for the Central Universities.

Return